L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)5-s + (−0.866 − 1.5i)7-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)15-s − 1.73i·21-s + (−0.866 + 1.5i)23-s + (−0.499 − 0.866i)25-s + 0.999i·27-s + (0.5 + 0.866i)29-s − 1.73·35-s + (−0.5 + 0.866i)41-s + 0.999·45-s + (0.866 + 1.5i)47-s + (−1 + 1.73i)49-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)5-s + (−0.866 − 1.5i)7-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)15-s − 1.73i·21-s + (−0.866 + 1.5i)23-s + (−0.499 − 0.866i)25-s + 0.999i·27-s + (0.5 + 0.866i)29-s − 1.73·35-s + (−0.5 + 0.866i)41-s + 0.999·45-s + (0.866 + 1.5i)47-s + (−1 + 1.73i)49-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.939+0.342i)Λ(1−s)
Λ(s)=(=(720s/2ΓC(s)L(s)(0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.939+0.342i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(319,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :0), 0.939+0.342i)
|
Particular Values
L(21) |
≈ |
1.234830524 |
L(21) |
≈ |
1.234830524 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.866−0.5i)T |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(−0.5+0.866i)T2 |
| 47 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 89 | 1+T+T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20029961747774673707224432113, −9.755916473043659594658264836448, −9.048397663310796971925852685668, −8.010195232001580241879209933299, −7.28891948476599430707801398791, −6.14834496880798090102101709635, −4.89485694381613977259459875115, −4.03758408865111910624035305607, −3.15618045760290732572839988046, −1.51478032317578336594166757865,
2.24611297220220331476510645754, 2.70293794684888481033897050418, 3.87276349712210614788700350242, 5.61399028497859415870112415434, 6.36866776584097815883184440209, 7.02585684708879847186149528269, 8.270797762792726198707625039532, 8.892380100205280971221178674388, 9.766825487891479562477886837017, 10.35522067596290242243292923170