L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)5-s + (−0.866 − 1.5i)7-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)15-s − 1.73i·21-s + (−0.866 + 1.5i)23-s + (−0.499 − 0.866i)25-s + 0.999i·27-s + (0.5 + 0.866i)29-s − 1.73·35-s + (−0.5 + 0.866i)41-s + 0.999·45-s + (0.866 + 1.5i)47-s + (−1 + 1.73i)49-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.5 − 0.866i)5-s + (−0.866 − 1.5i)7-s + (0.499 + 0.866i)9-s + (0.866 − 0.499i)15-s − 1.73i·21-s + (−0.866 + 1.5i)23-s + (−0.499 − 0.866i)25-s + 0.999i·27-s + (0.5 + 0.866i)29-s − 1.73·35-s + (−0.5 + 0.866i)41-s + 0.999·45-s + (0.866 + 1.5i)47-s + (−1 + 1.73i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.234830524\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.234830524\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20029961747774673707224432113, −9.755916473043659594658264836448, −9.048397663310796971925852685668, −8.010195232001580241879209933299, −7.28891948476599430707801398791, −6.14834496880798090102101709635, −4.89485694381613977259459875115, −4.03758408865111910624035305607, −3.15618045760290732572839988046, −1.51478032317578336594166757865,
2.24611297220220331476510645754, 2.70293794684888481033897050418, 3.87276349712210614788700350242, 5.61399028497859415870112415434, 6.36866776584097815883184440209, 7.02585684708879847186149528269, 8.270797762792726198707625039532, 8.892380100205280971221178674388, 9.766825487891479562477886837017, 10.35522067596290242243292923170