L(s) = 1 | + (1.06 + 0.933i)2-s + (0.256 + 1.98i)4-s + (1.86 − 1.24i)5-s + 1.58·7-s + (−1.57 + 2.34i)8-s + (3.13 + 0.418i)10-s + (−3.92 + 3.92i)11-s + (3.10 − 3.10i)13-s + (1.68 + 1.48i)14-s + (−3.86 + 1.01i)16-s + 1.48i·17-s + (4.94 + 4.94i)19-s + (2.93 + 3.37i)20-s + (−7.82 + 0.504i)22-s + 6.61·23-s + ⋯ |
L(s) = 1 | + (0.751 + 0.660i)2-s + (0.128 + 0.991i)4-s + (0.831 − 0.554i)5-s + 0.600·7-s + (−0.558 + 0.829i)8-s + (0.991 + 0.132i)10-s + (−1.18 + 1.18i)11-s + (0.861 − 0.861i)13-s + (0.451 + 0.396i)14-s + (−0.967 + 0.254i)16-s + 0.359i·17-s + (1.13 + 1.13i)19-s + (0.657 + 0.753i)20-s + (−1.66 + 0.107i)22-s + 1.38·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.17736 + 1.55173i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.17736 + 1.55173i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.06 - 0.933i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.86 + 1.24i)T \) |
good | 7 | \( 1 - 1.58T + 7T^{2} \) |
| 11 | \( 1 + (3.92 - 3.92i)T - 11iT^{2} \) |
| 13 | \( 1 + (-3.10 + 3.10i)T - 13iT^{2} \) |
| 17 | \( 1 - 1.48iT - 17T^{2} \) |
| 19 | \( 1 + (-4.94 - 4.94i)T + 19iT^{2} \) |
| 23 | \( 1 - 6.61T + 23T^{2} \) |
| 29 | \( 1 + (4.42 + 4.42i)T + 29iT^{2} \) |
| 31 | \( 1 + 1.50T + 31T^{2} \) |
| 37 | \( 1 + (2.14 + 2.14i)T + 37iT^{2} \) |
| 41 | \( 1 - 6.84iT - 41T^{2} \) |
| 43 | \( 1 + (-0.322 - 0.322i)T + 43iT^{2} \) |
| 47 | \( 1 + 13.3iT - 47T^{2} \) |
| 53 | \( 1 + (-0.931 - 0.931i)T + 53iT^{2} \) |
| 59 | \( 1 + (1.14 - 1.14i)T - 59iT^{2} \) |
| 61 | \( 1 + (-2.67 - 2.67i)T + 61iT^{2} \) |
| 67 | \( 1 + (5.43 - 5.43i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.26iT - 71T^{2} \) |
| 73 | \( 1 + 5.27T + 73T^{2} \) |
| 79 | \( 1 + 6.52T + 79T^{2} \) |
| 83 | \( 1 + (-0.973 + 0.973i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.83iT - 89T^{2} \) |
| 97 | \( 1 + 15.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54197012093378256988619074383, −9.717486159874536678493140685989, −8.581713741234396152133773283228, −7.898477552392698818870181553296, −7.10387811663834793738905250910, −5.73416300188648983779480291279, −5.38489880312812810217240528853, −4.44480906474682982933123738208, −3.10108751803041037021516224819, −1.77159768536328968402056904550,
1.29273548445432039625826502642, 2.65160270702057529155919705223, 3.39978627450740499622930319796, 4.96412357291257182966751011235, 5.47898339932503334944412116492, 6.49551047089404081953880655417, 7.41236963757658625654614079764, 8.885392206337325581615488536741, 9.427465143619054467376571642409, 10.76561381432710069904158843122