L(s) = 1 | + (1.36 − 0.386i)2-s + (1.70 − 1.05i)4-s + (1.98 − 1.03i)5-s − 3.91·7-s + (1.90 − 2.08i)8-s + (2.30 − 2.16i)10-s + (2.93 − 2.93i)11-s + (−0.732 + 0.732i)13-s + (−5.33 + 1.51i)14-s + (1.78 − 3.57i)16-s − 2.89i·17-s + (1.67 + 1.67i)19-s + (2.29 − 3.84i)20-s + (2.85 − 5.12i)22-s + 1.73·23-s + ⋯ |
L(s) = 1 | + (0.961 − 0.273i)2-s + (0.850 − 0.525i)4-s + (0.887 − 0.461i)5-s − 1.48·7-s + (0.674 − 0.738i)8-s + (0.727 − 0.686i)10-s + (0.884 − 0.884i)11-s + (−0.203 + 0.203i)13-s + (−1.42 + 0.404i)14-s + (0.447 − 0.894i)16-s − 0.701i·17-s + (0.384 + 0.384i)19-s + (0.512 − 0.858i)20-s + (0.609 − 1.09i)22-s + 0.361·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.397 + 0.917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.397 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.39022 - 1.57028i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.39022 - 1.57028i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.386i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.98 + 1.03i)T \) |
good | 7 | \( 1 + 3.91T + 7T^{2} \) |
| 11 | \( 1 + (-2.93 + 2.93i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.732 - 0.732i)T - 13iT^{2} \) |
| 17 | \( 1 + 2.89iT - 17T^{2} \) |
| 19 | \( 1 + (-1.67 - 1.67i)T + 19iT^{2} \) |
| 23 | \( 1 - 1.73T + 23T^{2} \) |
| 29 | \( 1 + (-4.99 - 4.99i)T + 29iT^{2} \) |
| 31 | \( 1 + 10.8T + 31T^{2} \) |
| 37 | \( 1 + (-6.41 - 6.41i)T + 37iT^{2} \) |
| 41 | \( 1 + 0.00577iT - 41T^{2} \) |
| 43 | \( 1 + (2.23 + 2.23i)T + 43iT^{2} \) |
| 47 | \( 1 - 11.6iT - 47T^{2} \) |
| 53 | \( 1 + (5.55 + 5.55i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.83 - 3.83i)T - 59iT^{2} \) |
| 61 | \( 1 + (-9.30 - 9.30i)T + 61iT^{2} \) |
| 67 | \( 1 + (3.85 - 3.85i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.15iT - 71T^{2} \) |
| 73 | \( 1 + 7.98T + 73T^{2} \) |
| 79 | \( 1 - 0.843T + 79T^{2} \) |
| 83 | \( 1 + (-5.20 + 5.20i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.40iT - 89T^{2} \) |
| 97 | \( 1 + 2.24iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21306500729538652459439100839, −9.526843142670733691798331265299, −8.881586549383386363178174519834, −7.22726517209700037262069150254, −6.39014966637964342168899095234, −5.84515377604089749584674157975, −4.81813657959139278444470323587, −3.55909065699671251965450208960, −2.77343461064714414943050543010, −1.20349830336800422028693385988,
2.01633404485487163701876565365, 3.10805322283004915406037390399, 4.01789638325007549151683843701, 5.30991975935683445135177693954, 6.24639882629255763336315599386, 6.72332480068235160821199826017, 7.54240377375516532848352721992, 9.074450148076866531531496583674, 9.753284897057580545856755208441, 10.54876100937157430197482435673