L(s) = 1 | + (−1.39 + 0.258i)2-s + (1.86 − 0.719i)4-s + (−2.19 − 0.404i)5-s − 1.81·7-s + (−2.40 + 1.48i)8-s + (3.16 − 0.00742i)10-s + (0.331 + 0.331i)11-s + (0.0310 + 0.0310i)13-s + (2.52 − 0.469i)14-s + (2.96 − 2.68i)16-s + 1.00i·17-s + (−2.08 + 2.08i)19-s + (−4.39 + 0.828i)20-s + (−0.547 − 0.375i)22-s + 6.22·23-s + ⋯ |
L(s) = 1 | + (−0.983 + 0.183i)2-s + (0.933 − 0.359i)4-s + (−0.983 − 0.180i)5-s − 0.686·7-s + (−0.851 + 0.524i)8-s + (0.999 − 0.00234i)10-s + (0.100 + 0.100i)11-s + (0.00860 + 0.00860i)13-s + (0.674 − 0.125i)14-s + (0.740 − 0.671i)16-s + 0.243i·17-s + (−0.477 + 0.477i)19-s + (−0.982 + 0.185i)20-s + (−0.116 − 0.0800i)22-s + 1.29·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 - 0.161i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.694438 + 0.0563147i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.694438 + 0.0563147i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 - 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.19 + 0.404i)T \) |
good | 7 | \( 1 + 1.81T + 7T^{2} \) |
| 11 | \( 1 + (-0.331 - 0.331i)T + 11iT^{2} \) |
| 13 | \( 1 + (-0.0310 - 0.0310i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.00iT - 17T^{2} \) |
| 19 | \( 1 + (2.08 - 2.08i)T - 19iT^{2} \) |
| 23 | \( 1 - 6.22T + 23T^{2} \) |
| 29 | \( 1 + (-6.28 + 6.28i)T - 29iT^{2} \) |
| 31 | \( 1 - 7.11T + 31T^{2} \) |
| 37 | \( 1 + (-0.0723 + 0.0723i)T - 37iT^{2} \) |
| 41 | \( 1 - 3.06iT - 41T^{2} \) |
| 43 | \( 1 + (3.78 - 3.78i)T - 43iT^{2} \) |
| 47 | \( 1 + 10.0iT - 47T^{2} \) |
| 53 | \( 1 + (-7.04 + 7.04i)T - 53iT^{2} \) |
| 59 | \( 1 + (-6.68 - 6.68i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.89 + 2.89i)T - 61iT^{2} \) |
| 67 | \( 1 + (-0.150 - 0.150i)T + 67iT^{2} \) |
| 71 | \( 1 - 14.5iT - 71T^{2} \) |
| 73 | \( 1 - 15.0T + 73T^{2} \) |
| 79 | \( 1 - 15.5T + 79T^{2} \) |
| 83 | \( 1 + (-5.48 - 5.48i)T + 83iT^{2} \) |
| 89 | \( 1 - 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 13.5iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24518091043525899498265085325, −9.611652622972356001252202043038, −8.479685682366884088796551272757, −8.137885714667196585900240670786, −6.93729239079875551788548985609, −6.43886293840811718672341983214, −5.08240145627882333675848181185, −3.77123793156016913322447323819, −2.61526100523465630492781657737, −0.816156749821622410473461126377,
0.78481839423319970229399819681, 2.70721539944571431913894124635, 3.49915819164909565185687769465, 4.84749361645760021437676340009, 6.47756164305081780411119901362, 6.92795660953598780310035709602, 7.928876283554670476378899795114, 8.719515003776894978204027878069, 9.418346365740569242198027005527, 10.51164962663077856058607137613