L(s) = 1 | + (−0.903 − 1.08i)2-s + (−0.368 + 1.96i)4-s + (2.09 − 0.770i)5-s + 3.05·7-s + (2.47 − 1.37i)8-s + (−2.73 − 1.58i)10-s + (1.80 + 1.80i)11-s + (2.47 + 2.47i)13-s + (−2.75 − 3.31i)14-s + (−3.72 − 1.44i)16-s + 3.66i·17-s + (−2.31 + 2.31i)19-s + (0.741 + 4.41i)20-s + (0.334 − 3.60i)22-s − 4.86·23-s + ⋯ |
L(s) = 1 | + (−0.638 − 0.769i)2-s + (−0.184 + 0.982i)4-s + (0.938 − 0.344i)5-s + 1.15·7-s + (0.873 − 0.486i)8-s + (−0.864 − 0.502i)10-s + (0.545 + 0.545i)11-s + (0.685 + 0.685i)13-s + (−0.736 − 0.887i)14-s + (−0.932 − 0.361i)16-s + 0.889i·17-s + (−0.531 + 0.531i)19-s + (0.165 + 0.986i)20-s + (0.0713 − 0.768i)22-s − 1.01·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 + 0.399i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.916 + 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.45958 - 0.304539i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.45958 - 0.304539i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.903 + 1.08i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.09 + 0.770i)T \) |
good | 7 | \( 1 - 3.05T + 7T^{2} \) |
| 11 | \( 1 + (-1.80 - 1.80i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.47 - 2.47i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.66iT - 17T^{2} \) |
| 19 | \( 1 + (2.31 - 2.31i)T - 19iT^{2} \) |
| 23 | \( 1 + 4.86T + 23T^{2} \) |
| 29 | \( 1 + (4.74 - 4.74i)T - 29iT^{2} \) |
| 31 | \( 1 - 1.86T + 31T^{2} \) |
| 37 | \( 1 + (-5.40 + 5.40i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.47iT - 41T^{2} \) |
| 43 | \( 1 + (4.19 - 4.19i)T - 43iT^{2} \) |
| 47 | \( 1 + 8.24iT - 47T^{2} \) |
| 53 | \( 1 + (-9.99 + 9.99i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.47 - 2.47i)T + 59iT^{2} \) |
| 61 | \( 1 + (-8.01 + 8.01i)T - 61iT^{2} \) |
| 67 | \( 1 + (8.60 + 8.60i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.63iT - 71T^{2} \) |
| 73 | \( 1 - 2.70T + 73T^{2} \) |
| 79 | \( 1 + 10.9T + 79T^{2} \) |
| 83 | \( 1 + (3.65 + 3.65i)T + 83iT^{2} \) |
| 89 | \( 1 + 13.1iT - 89T^{2} \) |
| 97 | \( 1 + 12.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26504243027507787688445022210, −9.614368074457860877960940560566, −8.634598457116550747515874264404, −8.213486850902601953472167059901, −6.97248281813378616236060807377, −5.90771988245784097554526602024, −4.64031164670971847789371939416, −3.82127732880201331274900212861, −2.00644438240468454518997545125, −1.54121270028190164350798899055,
1.14632812441912611218284827156, 2.41961891670945598454894169780, 4.26617788460014428216427785946, 5.44088018743843400904590619391, 6.01280864025049796019700909247, 6.99095750316759589075973381004, 7.960148527318181477934379976164, 8.680989745979063760130498973540, 9.479455385579266166456527089726, 10.36746598865618831708460730512