L(s) = 1 | + (−0.690 + 1.58i)3-s + (1.99 − 1.00i)5-s + (1.11 + 0.644i)7-s + (−2.04 − 2.19i)9-s + (2.54 − 4.41i)11-s + (3.09 − 1.78i)13-s + (0.225 + 3.86i)15-s − 0.895i·17-s − 5.34·19-s + (−1.79 + 1.32i)21-s + (4.38 − 2.53i)23-s + (2.96 − 4.02i)25-s + (4.89 − 1.73i)27-s + (−1.5 + 2.59i)29-s + (−3.29 − 5.71i)31-s + ⋯ |
L(s) = 1 | + (−0.398 + 0.917i)3-s + (0.892 − 0.451i)5-s + (0.421 + 0.243i)7-s + (−0.682 − 0.731i)9-s + (0.767 − 1.32i)11-s + (0.857 − 0.495i)13-s + (0.0582 + 0.998i)15-s − 0.217i·17-s − 1.22·19-s + (−0.391 + 0.289i)21-s + (0.914 − 0.528i)23-s + (0.592 − 0.805i)25-s + (0.942 − 0.334i)27-s + (−0.278 + 0.482i)29-s + (−0.592 − 1.02i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00269i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.66214 - 0.00223641i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.66214 - 0.00223641i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.690 - 1.58i)T \) |
| 5 | \( 1 + (-1.99 + 1.00i)T \) |
good | 7 | \( 1 + (-1.11 - 0.644i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.54 + 4.41i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.09 + 1.78i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 0.895iT - 17T^{2} \) |
| 19 | \( 1 + 5.34T + 19T^{2} \) |
| 23 | \( 1 + (-4.38 + 2.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.29 + 5.71i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 7.24iT - 37T^{2} \) |
| 41 | \( 1 + (-3.92 - 6.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-9.46 - 5.46i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.57 + 1.48i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 4.78iT - 53T^{2} \) |
| 59 | \( 1 + (-2.87 - 4.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.17 - 3.75i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.39 - 4.26i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.34T + 71T^{2} \) |
| 73 | \( 1 + 9.34iT - 73T^{2} \) |
| 79 | \( 1 + (-0.370 + 0.642i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.97 - 4.60i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 9.24T + 89T^{2} \) |
| 97 | \( 1 + (2.99 + 1.72i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60288156660340871400052828521, −9.409499135803636294353086448481, −8.882280454155641348565540672193, −8.215554280954697575376804813020, −6.38027138103629406251118231237, −5.97128872463973113769005550388, −5.02789341729405913181015122514, −4.04470122441978125938517679346, −2.84220814642831326813051124062, −1.06003824912197139798975400825,
1.49584832387724757488527027396, 2.22785596311731643663686944464, 3.95253112106624186099734866204, 5.17296551637279303611454337854, 6.17432817085334799244763027898, 6.85362400463265829143770530992, 7.51420063041616895568229391148, 8.778533194788781528604197157783, 9.458689460983131189282003172811, 10.82331855264020598605257325809