L(s) = 1 | + (1.5 − 0.866i)3-s + (0.5 + 0.866i)5-s + (−1.5 + 2.59i)7-s + (1.5 − 2.59i)9-s + (−1 + 1.73i)11-s + (1 + 1.73i)13-s + (1.5 + 0.866i)15-s + 4·17-s + 8·19-s + 5.19i·21-s + (1.5 + 2.59i)23-s + (−0.499 + 0.866i)25-s − 5.19i·27-s + (0.5 − 0.866i)29-s + 3.46i·33-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)3-s + (0.223 + 0.387i)5-s + (−0.566 + 0.981i)7-s + (0.5 − 0.866i)9-s + (−0.301 + 0.522i)11-s + (0.277 + 0.480i)13-s + (0.387 + 0.223i)15-s + 0.970·17-s + 1.83·19-s + 1.13i·21-s + (0.312 + 0.541i)23-s + (−0.0999 + 0.173i)25-s − 0.999i·27-s + (0.0928 − 0.160i)29-s + 0.603i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.04157 + 0.359985i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.04157 + 0.359985i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (1.5 - 2.59i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4T + 17T^{2} \) |
| 19 | \( 1 - 8T + 19T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (2.5 + 4.33i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.5 + 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + (7 + 12.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.5 + 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 + (3 - 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 + 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 15T + 89T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09150939549746597927053920240, −9.547609695683098551353532841257, −8.849943478974440186982724255510, −7.77650838471059596261502091712, −7.10679583974709831986743781916, −6.12156519138280435750732477786, −5.17055850751330882699124209379, −3.51759090327571145232493760843, −2.83625030546701733890904303266, −1.60763789755408143790910168679,
1.13874338536850994095405650931, 2.99728129544353360426983778020, 3.59621252759044902344282648574, 4.83168194940643303100738536912, 5.73892550641310864587451372998, 7.12820048389790173798542229356, 7.82029979437575278300668026496, 8.695231987502861283142760352908, 9.608617443960571825905924154476, 10.18892888898760967169349237883