L(s) = 1 | + (−0.866 − 1.5i)3-s + (0.5 + 0.866i)5-s + (0.133 − 0.232i)7-s + (−1.5 + 2.59i)9-s + (−0.732 + 1.26i)11-s + (2.73 + 4.73i)13-s + (0.866 − 1.5i)15-s + 0.535·17-s + 2·19-s − 0.464·21-s + (1.86 + 3.23i)23-s + (−0.499 + 0.866i)25-s + 5.19·27-s + (−0.767 + 1.33i)29-s + (−1 − 1.73i)31-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)3-s + (0.223 + 0.387i)5-s + (0.0506 − 0.0877i)7-s + (−0.5 + 0.866i)9-s + (−0.220 + 0.382i)11-s + (0.757 + 1.31i)13-s + (0.223 − 0.387i)15-s + 0.129·17-s + 0.458·19-s − 0.101·21-s + (0.389 + 0.673i)23-s + (−0.0999 + 0.173i)25-s + 1.00·27-s + (−0.142 + 0.246i)29-s + (−0.179 − 0.311i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25456 + 0.221213i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25456 + 0.221213i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 + 1.5i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-0.133 + 0.232i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.732 - 1.26i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.73 - 4.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 0.535T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-1.86 - 3.23i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.767 - 1.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 10.3T + 37T^{2} \) |
| 41 | \( 1 + (4.96 + 8.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.26 - 3.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.133 + 0.232i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-7.19 - 12.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.23 + 7.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.13 - 5.42i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.46T + 71T^{2} \) |
| 73 | \( 1 - 6.92T + 73T^{2} \) |
| 79 | \( 1 + (-7.73 + 13.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.59 - 11.4i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 9.92T + 89T^{2} \) |
| 97 | \( 1 + (-4.46 + 7.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64678491763587008843098802905, −9.613256421081321748046623447947, −8.700922513128986030203641919452, −7.59991870314145153478055969415, −6.97179043446640638886547515686, −6.13113912867951698656711326412, −5.25155443306023009544516508255, −3.98767178447564564844249093783, −2.50941293676367291269323027473, −1.35318532116602086919910884241,
0.805421824636803346274993369744, 2.88065150988372629488412583131, 3.89745579472869260738067587030, 5.09109234301985860271388624928, 5.66276724249526166519175194963, 6.59447129674172733634572766983, 8.038074580991079178119216828698, 8.671602372428560625602676072133, 9.675256627148733638606678687370, 10.33561388236564536529115086111