L(s) = 1 | + (−0.866 − 1.5i)3-s + (0.5 + 0.866i)5-s + (0.133 − 0.232i)7-s + (−1.5 + 2.59i)9-s + (−0.732 + 1.26i)11-s + (2.73 + 4.73i)13-s + (0.866 − 1.5i)15-s + 0.535·17-s + 2·19-s − 0.464·21-s + (1.86 + 3.23i)23-s + (−0.499 + 0.866i)25-s + 5.19·27-s + (−0.767 + 1.33i)29-s + (−1 − 1.73i)31-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)3-s + (0.223 + 0.387i)5-s + (0.0506 − 0.0877i)7-s + (−0.5 + 0.866i)9-s + (−0.220 + 0.382i)11-s + (0.757 + 1.31i)13-s + (0.223 − 0.387i)15-s + 0.129·17-s + 0.458·19-s − 0.101·21-s + (0.389 + 0.673i)23-s + (−0.0999 + 0.173i)25-s + 1.00·27-s + (−0.142 + 0.246i)29-s + (−0.179 − 0.311i)31-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.939−0.342i)Λ(2−s)
Λ(s)=(=(720s/2ΓC(s+1/2)L(s)(0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.939−0.342i
|
Analytic conductor: |
5.74922 |
Root analytic conductor: |
2.39775 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1/2), 0.939−0.342i)
|
Particular Values
L(1) |
≈ |
1.25456+0.221213i |
L(21) |
≈ |
1.25456+0.221213i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.866+1.5i)T |
| 5 | 1+(−0.5−0.866i)T |
good | 7 | 1+(−0.133+0.232i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.732−1.26i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.73−4.73i)T+(−6.5+11.2i)T2 |
| 17 | 1−0.535T+17T2 |
| 19 | 1−2T+19T2 |
| 23 | 1+(−1.86−3.23i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.767−1.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1+1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1−10.3T+37T2 |
| 41 | 1+(4.96+8.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.26−3.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.133+0.232i)T+(−23.5−40.7i)T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+(−7.19−12.4i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.23+7.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.13−5.42i)T+(−33.5+58.0i)T2 |
| 71 | 1+9.46T+71T2 |
| 73 | 1−6.92T+73T2 |
| 79 | 1+(−7.73+13.3i)T+(−39.5−68.4i)T2 |
| 83 | 1+(6.59−11.4i)T+(−41.5−71.8i)T2 |
| 89 | 1+9.92T+89T2 |
| 97 | 1+(−4.46+7.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64678491763587008843098802905, −9.613256421081321748046623447947, −8.700922513128986030203641919452, −7.59991870314145153478055969415, −6.97179043446640638886547515686, −6.13113912867951698656711326412, −5.25155443306023009544516508255, −3.98767178447564564844249093783, −2.50941293676367291269323027473, −1.35318532116602086919910884241,
0.805421824636803346274993369744, 2.88065150988372629488412583131, 3.89745579472869260738067587030, 5.09109234301985860271388624928, 5.66276724249526166519175194963, 6.59447129674172733634572766983, 8.038074580991079178119216828698, 8.671602372428560625602676072133, 9.675256627148733638606678687370, 10.33561388236564536529115086111