L(s) = 1 | + (0.866 − 1.5i)3-s + (0.5 − 0.866i)5-s + (1.86 + 3.23i)7-s + (−1.5 − 2.59i)9-s + (2.73 + 4.73i)11-s + (−0.732 + 1.26i)13-s + (−0.866 − 1.5i)15-s + 7.46·17-s + 2·19-s + 6.46·21-s + (0.133 − 0.232i)23-s + (−0.499 − 0.866i)25-s − 5.19·27-s + (−4.23 − 7.33i)29-s + (−1 + 1.73i)31-s + ⋯ |
L(s) = 1 | + (0.499 − 0.866i)3-s + (0.223 − 0.387i)5-s + (0.705 + 1.22i)7-s + (−0.5 − 0.866i)9-s + (0.823 + 1.42i)11-s + (−0.203 + 0.351i)13-s + (−0.223 − 0.387i)15-s + 1.81·17-s + 0.458·19-s + 1.41·21-s + (0.0279 − 0.0483i)23-s + (−0.0999 − 0.173i)25-s − 1.00·27-s + (−0.785 − 1.36i)29-s + (−0.179 + 0.311i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.05605 - 0.362538i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.05605 - 0.362538i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 + 1.5i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-1.86 - 3.23i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.73 - 4.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.732 - 1.26i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 7.46T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-0.133 + 0.232i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.23 + 7.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.3T + 37T^{2} \) |
| 41 | \( 1 + (-1.96 + 3.40i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.73 + 9.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.86 - 3.23i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (3.19 - 5.53i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.767 - 1.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.86 + 8.42i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.53T + 71T^{2} \) |
| 73 | \( 1 + 6.92T + 73T^{2} \) |
| 79 | \( 1 + (-4.26 - 7.39i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.40 + 2.42i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3.92T + 89T^{2} \) |
| 97 | \( 1 + (2.46 + 4.26i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08887260690458028287075406722, −9.308630420573988560475775394719, −8.695693994116082665355040757781, −7.73072567272829682921404345443, −7.05748822572469880368412497714, −5.85377577678537829012567189287, −5.11656528281010800229079060664, −3.72267651682755436128150591237, −2.26106290758426829005800491590, −1.52129200964677987526090258954,
1.30804776938713247561657938505, 3.26373479817536228400367575992, 3.65573702992317032300555882914, 4.98745926398486597457892330879, 5.80359888194190095953867301198, 7.17490505221813749994428940928, 7.930466823552962759373156909350, 8.752960157459792717080948476050, 9.755304587045957858813528591802, 10.42298664242185935633572009207