L(s) = 1 | + (0.129 − 2.99i)3-s + (1.93 + 1.11i)5-s + (−3.31 − 5.74i)7-s + (−8.96 − 0.774i)9-s + (18.2 − 10.5i)11-s + (4.89 − 8.47i)13-s + (3.60 − 5.65i)15-s + 12.9i·17-s − 16.1·19-s + (−17.6 + 9.19i)21-s + (−14.6 − 8.46i)23-s + (2.5 + 4.33i)25-s + (−3.48 + 26.7i)27-s + (43.3 − 25.0i)29-s + (−5.03 + 8.71i)31-s + ⋯ |
L(s) = 1 | + (0.0430 − 0.999i)3-s + (0.387 + 0.223i)5-s + (−0.473 − 0.820i)7-s + (−0.996 − 0.0860i)9-s + (1.65 − 0.956i)11-s + (0.376 − 0.651i)13-s + (0.240 − 0.377i)15-s + 0.758i·17-s − 0.851·19-s + (−0.840 + 0.437i)21-s + (−0.637 − 0.368i)23-s + (0.100 + 0.173i)25-s + (−0.128 + 0.991i)27-s + (1.49 − 0.863i)29-s + (−0.162 + 0.281i)31-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.818+0.574i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(−0.818+0.574i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.818+0.574i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), −0.818+0.574i)
|
Particular Values
L(23) |
≈ |
1.605749872 |
L(21) |
≈ |
1.605749872 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.129+2.99i)T |
| 5 | 1+(−1.93−1.11i)T |
good | 7 | 1+(3.31+5.74i)T+(−24.5+42.4i)T2 |
| 11 | 1+(−18.2+10.5i)T+(60.5−104.i)T2 |
| 13 | 1+(−4.89+8.47i)T+(−84.5−146.i)T2 |
| 17 | 1−12.9iT−289T2 |
| 19 | 1+16.1T+361T2 |
| 23 | 1+(14.6+8.46i)T+(264.5+458.i)T2 |
| 29 | 1+(−43.3+25.0i)T+(420.5−728.i)T2 |
| 31 | 1+(5.03−8.71i)T+(−480.5−832.i)T2 |
| 37 | 1−2.54T+1.36e3T2 |
| 41 | 1+(46.5+26.8i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(37.4+64.8i)T+(−924.5+1.60e3i)T2 |
| 47 | 1+(40.8−23.6i)T+(1.10e3−1.91e3i)T2 |
| 53 | 1−1.08iT−2.80e3T2 |
| 59 | 1+(8.34+4.81i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(−22.4−38.8i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(1.67−2.89i)T+(−2.24e3−3.88e3i)T2 |
| 71 | 1+38.4iT−5.04e3T2 |
| 73 | 1+88.9T+5.32e3T2 |
| 79 | 1+(−58.8−101.i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(127.−73.5i)T+(3.44e3−5.96e3i)T2 |
| 89 | 1+145.iT−7.92e3T2 |
| 97 | 1+(−23.5−40.7i)T+(−4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.994674367092882778171375369261, −8.672088341794956159377359897239, −8.318339883226714532866169245007, −6.94695366614190163135171237369, −6.45318636900229914904056349116, −5.78826725802268909879233145543, −4.05658519325733717037529804119, −3.17905924791495124672416443801, −1.70545466415228159975940191932, −0.56408307043847950573352941434,
1.73900164647814811790676569679, 3.07666235332492458586447772769, 4.22541744651888556896162067844, 4.95317175698434017063410641919, 6.19774084616650980631005259708, 6.71148956959891407655432550652, 8.358822890762445117212585934715, 9.091385903485710446976548123385, 9.578212116319932515725450888512, 10.27230129900154725394824505834