L(s) = 1 | − 2.23·5-s + 9.06i·7-s − 4.28i·11-s − 9.41·13-s − 18·17-s − 36.2i·19-s + 22.9i·23-s + 5.00·25-s + 44.8·29-s − 35.2i·31-s − 20.2i·35-s + 6.58·37-s − 52.2·41-s − 28.8i·43-s − 90.1i·47-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.29i·7-s − 0.389i·11-s − 0.724·13-s − 1.05·17-s − 1.90i·19-s + 0.996i·23-s + 0.200·25-s + 1.54·29-s − 1.13i·31-s − 0.579i·35-s + 0.177·37-s − 1.27·41-s − 0.670i·43-s − 1.91i·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.5+0.866i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(−0.5+0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.5+0.866i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), −0.5+0.866i)
|
Particular Values
L(23) |
≈ |
0.5475001624 |
L(21) |
≈ |
0.5475001624 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+2.23T |
good | 7 | 1−9.06iT−49T2 |
| 11 | 1+4.28iT−121T2 |
| 13 | 1+9.41T+169T2 |
| 17 | 1+18T+289T2 |
| 19 | 1+36.2iT−361T2 |
| 23 | 1−22.9iT−529T2 |
| 29 | 1−44.8T+841T2 |
| 31 | 1+35.2iT−961T2 |
| 37 | 1−6.58T+1.36e3T2 |
| 41 | 1+52.2T+1.68e3T2 |
| 43 | 1+28.8iT−1.84e3T2 |
| 47 | 1+90.1iT−2.20e3T2 |
| 53 | 1+52.2T+2.80e3T2 |
| 59 | 1+17.1iT−3.48e3T2 |
| 61 | 1+50.5T+3.72e3T2 |
| 67 | 1+33.1iT−4.48e3T2 |
| 71 | 1+20.1iT−5.04e3T2 |
| 73 | 1+91.6T+5.32e3T2 |
| 79 | 1+42.8iT−6.24e3T2 |
| 83 | 1−22.3iT−6.88e3T2 |
| 89 | 1+47.6T+7.92e3T2 |
| 97 | 1+160.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.777001380695223774437175726667, −8.946271507237837294037211348633, −8.416027863237256524158062977361, −7.24826059709875262024955942401, −6.42833519498707328197249739787, −5.30689146390029485069246659303, −4.55015624217656607730695593699, −3.08818026969010172978020151958, −2.19923826177031711785418606456, −0.19381442377873155802409579160,
1.38179626340448308843889577599, 2.97123484421082209794274889103, 4.20874931189570728910642451186, 4.73259953585066063772744938246, 6.28100680247349600879873704327, 7.04360105212120725429100136339, 7.85879684291984121109542862582, 8.627020564082968737503518958073, 9.931575698883027979388856226885, 10.37103574611051485180370108688