Properties

Label 2-720-1.1-c3-0-16
Degree $2$
Conductor $720$
Sign $-1$
Analytic cond. $42.4813$
Root an. cond. $6.51777$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 16·7-s + 36·11-s − 42·13-s + 110·17-s + 116·19-s + 16·23-s + 25·25-s − 198·29-s − 240·31-s + 80·35-s − 258·37-s − 442·41-s + 292·43-s + 392·47-s − 87·49-s − 142·53-s − 180·55-s − 348·59-s − 570·61-s + 210·65-s − 692·67-s + 168·71-s − 134·73-s − 576·77-s − 784·79-s + 564·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.863·7-s + 0.986·11-s − 0.896·13-s + 1.56·17-s + 1.40·19-s + 0.145·23-s + 1/5·25-s − 1.26·29-s − 1.39·31-s + 0.386·35-s − 1.14·37-s − 1.68·41-s + 1.03·43-s + 1.21·47-s − 0.253·49-s − 0.368·53-s − 0.441·55-s − 0.767·59-s − 1.19·61-s + 0.400·65-s − 1.26·67-s + 0.280·71-s − 0.214·73-s − 0.852·77-s − 1.11·79-s + 0.745·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(42.4813\)
Root analytic conductor: \(6.51777\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 720,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + p T \)
good7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 + 42 T + p^{3} T^{2} \)
17 \( 1 - 110 T + p^{3} T^{2} \)
19 \( 1 - 116 T + p^{3} T^{2} \)
23 \( 1 - 16 T + p^{3} T^{2} \)
29 \( 1 + 198 T + p^{3} T^{2} \)
31 \( 1 + 240 T + p^{3} T^{2} \)
37 \( 1 + 258 T + p^{3} T^{2} \)
41 \( 1 + 442 T + p^{3} T^{2} \)
43 \( 1 - 292 T + p^{3} T^{2} \)
47 \( 1 - 392 T + p^{3} T^{2} \)
53 \( 1 + 142 T + p^{3} T^{2} \)
59 \( 1 + 348 T + p^{3} T^{2} \)
61 \( 1 + 570 T + p^{3} T^{2} \)
67 \( 1 + 692 T + p^{3} T^{2} \)
71 \( 1 - 168 T + p^{3} T^{2} \)
73 \( 1 + 134 T + p^{3} T^{2} \)
79 \( 1 + 784 T + p^{3} T^{2} \)
83 \( 1 - 564 T + p^{3} T^{2} \)
89 \( 1 + 1034 T + p^{3} T^{2} \)
97 \( 1 + 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543690975066072429623702159999, −8.951891471947032040563394274677, −7.52451760798479621278663508109, −7.22608319743094168985827171129, −5.96538394294430222702470974443, −5.11847996101791448743214064276, −3.73582908767111393171100873805, −3.13875424788702571891199556941, −1.44263295184550130017139136020, 0, 1.44263295184550130017139136020, 3.13875424788702571891199556941, 3.73582908767111393171100873805, 5.11847996101791448743214064276, 5.96538394294430222702470974443, 7.22608319743094168985827171129, 7.52451760798479621278663508109, 8.951891471947032040563394274677, 9.543690975066072429623702159999

Graph of the $Z$-function along the critical line