L(s) = 1 | + (−2 − 11i)5-s + (55 + 55i)13-s + (5 − 5i)17-s + (−117 + 44i)25-s + 284i·29-s + (305 − 305i)37-s + 472·41-s − 343i·49-s + (−545 − 545i)53-s + 468·61-s + (495 − 715i)65-s + (845 + 845i)73-s + (−65 − 45i)85-s − 176i·89-s + (1.20e3 − 1.20e3i)97-s + ⋯ |
L(s) = 1 | + (−0.178 − 0.983i)5-s + (1.17 + 1.17i)13-s + (0.0713 − 0.0713i)17-s + (−0.936 + 0.351i)25-s + 1.81i·29-s + (1.35 − 1.35i)37-s + 1.79·41-s − i·49-s + (−1.41 − 1.41i)53-s + 0.982·61-s + (0.944 − 1.36i)65-s + (1.35 + 1.35i)73-s + (−0.0829 − 0.0574i)85-s − 0.209i·89-s + (1.26 − 1.26i)97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.930 + 0.365i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.930 + 0.365i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.019336324\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.019336324\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2 + 11i)T \) |
good | 7 | \( 1 + 343iT^{2} \) |
| 11 | \( 1 - 1.33e3T^{2} \) |
| 13 | \( 1 + (-55 - 55i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + (-5 + 5i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 - 1.21e4iT^{2} \) |
| 29 | \( 1 - 284iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 2.97e4T^{2} \) |
| 37 | \( 1 + (-305 + 305i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 472T + 6.89e4T^{2} \) |
| 43 | \( 1 - 7.95e4iT^{2} \) |
| 47 | \( 1 + 1.03e5iT^{2} \) |
| 53 | \( 1 + (545 + 545i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + 2.05e5T^{2} \) |
| 61 | \( 1 - 468T + 2.26e5T^{2} \) |
| 67 | \( 1 + 3.00e5iT^{2} \) |
| 71 | \( 1 - 3.57e5T^{2} \) |
| 73 | \( 1 + (-845 - 845i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 + 4.93e5T^{2} \) |
| 83 | \( 1 - 5.71e5iT^{2} \) |
| 89 | \( 1 + 176iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-1.20e3 + 1.20e3i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.752539448161338722711781985564, −9.021038256292121561963168621617, −8.434774163510553721743460744860, −7.40367563835019125982729736841, −6.38090626175692947072100751376, −5.42365980623551616013159577834, −4.41691765596952084384104064892, −3.58793458086556101685615658429, −1.93469832411392515147513232177, −0.827088644139587172965063481575,
0.844783072068396638577751644417, 2.50309463173715131180934963601, 3.40502973650737013732085776326, 4.43262118835111899270036255911, 5.94069092019349706860256077472, 6.30309606982893415500692894033, 7.70037538277589803902575063093, 8.035207237350253545276539554942, 9.327099308316052791764916078768, 10.17090362423516289352292614470