L(s) = 1 | + (−2 − 11i)5-s + (55 + 55i)13-s + (5 − 5i)17-s + (−117 + 44i)25-s + 284i·29-s + (305 − 305i)37-s + 472·41-s − 343i·49-s + (−545 − 545i)53-s + 468·61-s + (495 − 715i)65-s + (845 + 845i)73-s + (−65 − 45i)85-s − 176i·89-s + (1.20e3 − 1.20e3i)97-s + ⋯ |
L(s) = 1 | + (−0.178 − 0.983i)5-s + (1.17 + 1.17i)13-s + (0.0713 − 0.0713i)17-s + (−0.936 + 0.351i)25-s + 1.81i·29-s + (1.35 − 1.35i)37-s + 1.79·41-s − i·49-s + (−1.41 − 1.41i)53-s + 0.982·61-s + (0.944 − 1.36i)65-s + (1.35 + 1.35i)73-s + (−0.0829 − 0.0574i)85-s − 0.209i·89-s + (1.26 − 1.26i)97-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.930+0.365i)Λ(4−s)
Λ(s)=(=(720s/2ΓC(s+3/2)L(s)(0.930+0.365i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.930+0.365i
|
Analytic conductor: |
42.4813 |
Root analytic conductor: |
6.51777 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(703,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :3/2), 0.930+0.365i)
|
Particular Values
L(2) |
≈ |
2.019336324 |
L(21) |
≈ |
2.019336324 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2+11i)T |
good | 7 | 1+343iT2 |
| 11 | 1−1.33e3T2 |
| 13 | 1+(−55−55i)T+2.19e3iT2 |
| 17 | 1+(−5+5i)T−4.91e3iT2 |
| 19 | 1+6.85e3T2 |
| 23 | 1−1.21e4iT2 |
| 29 | 1−284iT−2.43e4T2 |
| 31 | 1−2.97e4T2 |
| 37 | 1+(−305+305i)T−5.06e4iT2 |
| 41 | 1−472T+6.89e4T2 |
| 43 | 1−7.95e4iT2 |
| 47 | 1+1.03e5iT2 |
| 53 | 1+(545+545i)T+1.48e5iT2 |
| 59 | 1+2.05e5T2 |
| 61 | 1−468T+2.26e5T2 |
| 67 | 1+3.00e5iT2 |
| 71 | 1−3.57e5T2 |
| 73 | 1+(−845−845i)T+3.89e5iT2 |
| 79 | 1+4.93e5T2 |
| 83 | 1−5.71e5iT2 |
| 89 | 1+176iT−7.04e5T2 |
| 97 | 1+(−1.20e3+1.20e3i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.752539448161338722711781985564, −9.021038256292121561963168621617, −8.434774163510553721743460744860, −7.40367563835019125982729736841, −6.38090626175692947072100751376, −5.42365980623551616013159577834, −4.41691765596952084384104064892, −3.58793458086556101685615658429, −1.93469832411392515147513232177, −0.827088644139587172965063481575,
0.844783072068396638577751644417, 2.50309463173715131180934963601, 3.40502973650737013732085776326, 4.43262118835111899270036255911, 5.94069092019349706860256077472, 6.30309606982893415500692894033, 7.70037538277589803902575063093, 8.035207237350253545276539554942, 9.327099308316052791764916078768, 10.17090362423516289352292614470