L(s) = 1 | + 25·5-s − 218·7-s − 480·11-s − 622·13-s − 186·17-s + 1.20e3·19-s − 3.18e3·23-s + 625·25-s − 5.52e3·29-s − 9.35e3·31-s − 5.45e3·35-s + 5.61e3·37-s + 1.43e4·41-s + 370·43-s + 1.61e4·47-s + 3.07e4·49-s + 4.37e3·53-s − 1.20e4·55-s − 1.17e4·59-s + 1.32e4·61-s − 1.55e4·65-s + 1.15e4·67-s − 2.95e4·71-s + 3.36e4·73-s + 1.04e5·77-s − 3.12e4·79-s − 3.84e4·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.68·7-s − 1.19·11-s − 1.02·13-s − 0.156·17-s + 0.765·19-s − 1.25·23-s + 1/5·25-s − 1.22·29-s − 1.74·31-s − 0.752·35-s + 0.674·37-s + 1.33·41-s + 0.0305·43-s + 1.06·47-s + 1.82·49-s + 0.213·53-s − 0.534·55-s − 0.439·59-s + 0.454·61-s − 0.456·65-s + 0.314·67-s − 0.695·71-s + 0.740·73-s + 2.01·77-s − 0.562·79-s − 0.612·83-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(720s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.7257912654 |
L(21) |
≈ |
0.7257912654 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−p2T |
good | 7 | 1+218T+p5T2 |
| 11 | 1+480T+p5T2 |
| 13 | 1+622T+p5T2 |
| 17 | 1+186T+p5T2 |
| 19 | 1−1204T+p5T2 |
| 23 | 1+3186T+p5T2 |
| 29 | 1+5526T+p5T2 |
| 31 | 1+9356T+p5T2 |
| 37 | 1−5618T+p5T2 |
| 41 | 1−14394T+p5T2 |
| 43 | 1−370T+p5T2 |
| 47 | 1−16146T+p5T2 |
| 53 | 1−4374T+p5T2 |
| 59 | 1+11748T+p5T2 |
| 61 | 1−13202T+p5T2 |
| 67 | 1−11542T+p5T2 |
| 71 | 1+29532T+p5T2 |
| 73 | 1−33698T+p5T2 |
| 79 | 1+31208T+p5T2 |
| 83 | 1+38466T+p5T2 |
| 89 | 1+119514T+p5T2 |
| 97 | 1−94658T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.690816688234801809005562874992, −9.098566798818769925975626306144, −7.68980610564291871131544125167, −7.13290944209961654065967088343, −5.94194987005716777417466882588, −5.43562095897497227288491159121, −4.02619197900537234653869128669, −2.95440724832837064510945733095, −2.15999979740506238796366021183, −0.36848009909611478170979415846,
0.36848009909611478170979415846, 2.15999979740506238796366021183, 2.95440724832837064510945733095, 4.02619197900537234653869128669, 5.43562095897497227288491159121, 5.94194987005716777417466882588, 7.13290944209961654065967088343, 7.68980610564291871131544125167, 9.098566798818769925975626306144, 9.690816688234801809005562874992