Properties

Label 2-720-1.1-c5-0-4
Degree $2$
Conductor $720$
Sign $1$
Analytic cond. $115.476$
Root an. cond. $10.7459$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 25·5-s − 218·7-s − 480·11-s − 622·13-s − 186·17-s + 1.20e3·19-s − 3.18e3·23-s + 625·25-s − 5.52e3·29-s − 9.35e3·31-s − 5.45e3·35-s + 5.61e3·37-s + 1.43e4·41-s + 370·43-s + 1.61e4·47-s + 3.07e4·49-s + 4.37e3·53-s − 1.20e4·55-s − 1.17e4·59-s + 1.32e4·61-s − 1.55e4·65-s + 1.15e4·67-s − 2.95e4·71-s + 3.36e4·73-s + 1.04e5·77-s − 3.12e4·79-s − 3.84e4·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.68·7-s − 1.19·11-s − 1.02·13-s − 0.156·17-s + 0.765·19-s − 1.25·23-s + 1/5·25-s − 1.22·29-s − 1.74·31-s − 0.752·35-s + 0.674·37-s + 1.33·41-s + 0.0305·43-s + 1.06·47-s + 1.82·49-s + 0.213·53-s − 0.534·55-s − 0.439·59-s + 0.454·61-s − 0.456·65-s + 0.314·67-s − 0.695·71-s + 0.740·73-s + 2.01·77-s − 0.562·79-s − 0.612·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(115.476\)
Root analytic conductor: \(10.7459\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 720,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7257912654\)
\(L(\frac12)\) \(\approx\) \(0.7257912654\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - p^{2} T \)
good7 \( 1 + 218 T + p^{5} T^{2} \)
11 \( 1 + 480 T + p^{5} T^{2} \)
13 \( 1 + 622 T + p^{5} T^{2} \)
17 \( 1 + 186 T + p^{5} T^{2} \)
19 \( 1 - 1204 T + p^{5} T^{2} \)
23 \( 1 + 3186 T + p^{5} T^{2} \)
29 \( 1 + 5526 T + p^{5} T^{2} \)
31 \( 1 + 9356 T + p^{5} T^{2} \)
37 \( 1 - 5618 T + p^{5} T^{2} \)
41 \( 1 - 14394 T + p^{5} T^{2} \)
43 \( 1 - 370 T + p^{5} T^{2} \)
47 \( 1 - 16146 T + p^{5} T^{2} \)
53 \( 1 - 4374 T + p^{5} T^{2} \)
59 \( 1 + 11748 T + p^{5} T^{2} \)
61 \( 1 - 13202 T + p^{5} T^{2} \)
67 \( 1 - 11542 T + p^{5} T^{2} \)
71 \( 1 + 29532 T + p^{5} T^{2} \)
73 \( 1 - 33698 T + p^{5} T^{2} \)
79 \( 1 + 31208 T + p^{5} T^{2} \)
83 \( 1 + 38466 T + p^{5} T^{2} \)
89 \( 1 + 119514 T + p^{5} T^{2} \)
97 \( 1 - 94658 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.690816688234801809005562874992, −9.098566798818769925975626306144, −7.68980610564291871131544125167, −7.13290944209961654065967088343, −5.94194987005716777417466882588, −5.43562095897497227288491159121, −4.02619197900537234653869128669, −2.95440724832837064510945733095, −2.15999979740506238796366021183, −0.36848009909611478170979415846, 0.36848009909611478170979415846, 2.15999979740506238796366021183, 2.95440724832837064510945733095, 4.02619197900537234653869128669, 5.43562095897497227288491159121, 5.94194987005716777417466882588, 7.13290944209961654065967088343, 7.68980610564291871131544125167, 9.098566798818769925975626306144, 9.690816688234801809005562874992

Graph of the $Z$-function along the critical line