L(s) = 1 | + 4·13-s + 2·17-s + 4·29-s − 12·37-s + 8·41-s − 7·49-s + 14·53-s + 10·61-s + 16·73-s − 16·89-s − 8·97-s − 20·101-s − 6·109-s + 14·113-s + ⋯ |
L(s) = 1 | + 1.10·13-s + 0.485·17-s + 0.742·29-s − 1.97·37-s + 1.24·41-s − 49-s + 1.92·53-s + 1.28·61-s + 1.87·73-s − 1.69·89-s − 0.812·97-s − 1.99·101-s − 0.574·109-s + 1.31·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.175723845\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.175723845\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 4 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 12 T + p T^{2} \) |
| 41 | \( 1 - 8 T + p T^{2} \) |
| 43 | \( 1 + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 14 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 16 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 16 T + p T^{2} \) |
| 97 | \( 1 + 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.134981812132933062884367318080, −7.08564802969729138082623550983, −6.64106416224541718158337983471, −5.73177960357969520686867364811, −5.25380619985180969922896787586, −4.22006931432695016863165642875, −3.61240385453232533909280078955, −2.77238840879191056562050064581, −1.72949605868864546159014839141, −0.77395697445145218023139805994,
0.77395697445145218023139805994, 1.72949605868864546159014839141, 2.77238840879191056562050064581, 3.61240385453232533909280078955, 4.22006931432695016863165642875, 5.25380619985180969922896787586, 5.73177960357969520686867364811, 6.64106416224541718158337983471, 7.08564802969729138082623550983, 8.134981812132933062884367318080