L(s) = 1 | + 5.23·7-s − 7.70·23-s + 6·29-s − 4.47·41-s + 6.76·43-s − 0.291·47-s + 20.4·49-s + 13.4·61-s + 14.1·67-s + 4.29·83-s − 6·89-s + 18·101-s − 2.18·103-s + 19.7·107-s − 13.4·109-s + ⋯ |
L(s) = 1 | + 1.97·7-s − 1.60·23-s + 1.11·29-s − 0.698·41-s + 1.03·43-s − 0.0425·47-s + 2.91·49-s + 1.71·61-s + 1.73·67-s + 0.471·83-s − 0.635·89-s + 1.79·101-s − 0.214·103-s + 1.90·107-s − 1.28·109-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.706710580 |
L(21) |
≈ |
2.706710580 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−5.23T+7T2 |
| 11 | 1+11T2 |
| 13 | 1+13T2 |
| 17 | 1+17T2 |
| 19 | 1+19T2 |
| 23 | 1+7.70T+23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+37T2 |
| 41 | 1+4.47T+41T2 |
| 43 | 1−6.76T+43T2 |
| 47 | 1+0.291T+47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1−13.4T+61T2 |
| 67 | 1−14.1T+67T2 |
| 71 | 1+71T2 |
| 73 | 1+73T2 |
| 79 | 1+79T2 |
| 83 | 1−4.29T+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.096559439968840208930334390025, −7.38196287531328426459859164677, −6.55304506873024720074428570896, −5.67834446320787553307869061323, −5.07503917300434549897758671992, −4.40062423072192247189511174106, −3.76033628270095452825522072513, −2.46129744287166072400837008542, −1.84434307512047331684423106027, −0.869168304842140774857568928108,
0.869168304842140774857568928108, 1.84434307512047331684423106027, 2.46129744287166072400837008542, 3.76033628270095452825522072513, 4.40062423072192247189511174106, 5.07503917300434549897758671992, 5.67834446320787553307869061323, 6.55304506873024720074428570896, 7.38196287531328426459859164677, 8.096559439968840208930334390025