L(s) = 1 | − 2i·7-s + 2i·11-s − 5.29i·19-s + 5.29i·23-s + 6i·29-s − 4·31-s − 10.5·37-s + 10.5·41-s + 10.5·43-s − 5.29i·47-s + 3·49-s + 2·53-s − 10i·59-s + 10.5i·61-s + 10.5·71-s + ⋯ |
L(s) = 1 | − 0.755i·7-s + 0.603i·11-s − 1.21i·19-s + 1.10i·23-s + 1.11i·29-s − 0.718·31-s − 1.73·37-s + 1.65·41-s + 1.61·43-s − 0.771i·47-s + 0.428·49-s + 0.274·53-s − 1.30i·59-s + 1.35i·61-s + 1.25·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.102i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.102i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.853436293\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.853436293\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 2iT - 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 5.29iT - 19T^{2} \) |
| 23 | \( 1 - 5.29iT - 23T^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + 10.5T + 37T^{2} \) |
| 41 | \( 1 - 10.5T + 41T^{2} \) |
| 43 | \( 1 - 10.5T + 43T^{2} \) |
| 47 | \( 1 + 5.29iT - 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 - 10.5iT - 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 - 10.5T + 71T^{2} \) |
| 73 | \( 1 - 14iT - 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 - 10.5T + 89T^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70911467152421228517695453941, −7.13552170148386202053465951619, −6.83767143038572209381550463093, −5.66346438073431523850221835093, −5.14183725723257532345681819953, −4.24979806806465041414669966312, −3.66236926964035157377966023732, −2.70036645238216543222959981614, −1.74346427855236230104238792028, −0.70279904433599758660255375424,
0.67536781244110429537170552294, 1.94379237936526362997946633075, 2.64952880922600794610705034496, 3.59693908041954476370488146861, 4.29205658391621457955281615903, 5.23468506567377163099470193623, 5.95955021508237611101014945839, 6.27264724927916123932463794072, 7.38821843763330444304316535280, 7.912610982343659384993579381312