L(s) = 1 | + 2i·7-s − 5·11-s + 5i·17-s − 5·19-s − 6i·23-s + 4·29-s + 10·31-s + 10i·37-s − 5·41-s + 4i·43-s − 8i·47-s + 3·49-s + 10i·53-s − 10·61-s − 3i·67-s + ⋯ |
L(s) = 1 | + 0.755i·7-s − 1.50·11-s + 1.21i·17-s − 1.14·19-s − 1.25i·23-s + 0.742·29-s + 1.79·31-s + 1.64i·37-s − 0.780·41-s + 0.609i·43-s − 1.16i·47-s + 0.428·49-s + 1.37i·53-s − 1.28·61-s − 0.366i·67-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(6049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.3588927583 |
L(21) |
≈ |
0.3588927583 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−2iT−7T2 |
| 11 | 1+5T+11T2 |
| 13 | 1−13T2 |
| 17 | 1−5iT−17T2 |
| 19 | 1+5T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−4T+29T2 |
| 31 | 1−10T+31T2 |
| 37 | 1−10iT−37T2 |
| 41 | 1+5T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1−10iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+3iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+5iT−73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1−iT−83T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.001200429110217781127095934640, −6.86321698490405171872989459535, −6.25539741310602627489639645224, −5.69716245654546124102327817574, −4.73195858614391250243416121206, −4.35102195707219607805513246131, −2.97590832759699342276580701877, −2.60039703955394184412487515662, −1.58237202439360885511901440437, −0.096609520968591597397577249996,
0.946771510326957582099687517257, 2.26004773416192368350231326520, 2.89849467608506502650243031881, 3.85406954554083744119136396546, 4.67439936844427499058545876276, 5.22633083961688524811836886884, 6.05001814601367796966109426352, 6.89227647999716666087434851707, 7.48120076200818950937611115087, 8.025598430871014784734312261274