Properties

Label 2-7200-5.4-c1-0-57
Degree $2$
Conductor $7200$
Sign $-0.447 + 0.894i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·7-s − 5·11-s + 5i·17-s − 5·19-s − 6i·23-s + 4·29-s + 10·31-s + 10i·37-s − 5·41-s + 4i·43-s − 8i·47-s + 3·49-s + 10i·53-s − 10·61-s − 3i·67-s + ⋯
L(s)  = 1  + 0.755i·7-s − 1.50·11-s + 1.21i·17-s − 1.14·19-s − 1.25i·23-s + 0.742·29-s + 1.79·31-s + 1.64i·37-s − 0.780·41-s + 0.609i·43-s − 1.16i·47-s + 0.428·49-s + 1.37i·53-s − 1.28·61-s − 0.366i·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (6049, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3588927583\)
\(L(\frac12)\) \(\approx\) \(0.3588927583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 5T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 5iT - 17T^{2} \)
19 \( 1 + 5T + 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 - 10T + 31T^{2} \)
37 \( 1 - 10iT - 37T^{2} \)
41 \( 1 + 5T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 - 10iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 3iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 5iT - 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 - iT - 83T^{2} \)
89 \( 1 + 9T + 89T^{2} \)
97 \( 1 + 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.001200429110217781127095934640, −6.86321698490405171872989459535, −6.25539741310602627489639645224, −5.69716245654546124102327817574, −4.73195858614391250243416121206, −4.35102195707219607805513246131, −2.97590832759699342276580701877, −2.60039703955394184412487515662, −1.58237202439360885511901440437, −0.096609520968591597397577249996, 0.946771510326957582099687517257, 2.26004773416192368350231326520, 2.89849467608506502650243031881, 3.85406954554083744119136396546, 4.67439936844427499058545876276, 5.22633083961688524811836886884, 6.05001814601367796966109426352, 6.89227647999716666087434851707, 7.48120076200818950937611115087, 8.025598430871014784734312261274

Graph of the $Z$-function along the critical line