L(s) = 1 | + 2i·7-s + 5·11-s − 5i·17-s + 5·19-s − 6i·23-s + 4·29-s − 10·31-s − 10i·37-s − 5·41-s + 4i·43-s − 8i·47-s + 3·49-s − 10i·53-s − 10·61-s − 3i·67-s + ⋯ |
L(s) = 1 | + 0.755i·7-s + 1.50·11-s − 1.21i·17-s + 1.14·19-s − 1.25i·23-s + 0.742·29-s − 1.79·31-s − 1.64i·37-s − 0.780·41-s + 0.609i·43-s − 1.16i·47-s + 0.428·49-s − 1.37i·53-s − 1.28·61-s − 0.366i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.976337789\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.976337789\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 - 5T + 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 + 5iT - 17T^{2} \) |
| 19 | \( 1 - 5T + 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + 10T + 31T^{2} \) |
| 37 | \( 1 + 10iT - 37T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 8iT - 47T^{2} \) |
| 53 | \( 1 + 10iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 3iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 5iT - 73T^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 - iT - 83T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 - 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.75935638861024541399912663224, −6.97103644968742980111144529460, −6.55556994742163320850891697567, −5.58733519521942710924459766528, −5.11248210463901629885957202798, −4.15555517783461570217754808179, −3.42169017106700722991706893231, −2.55687230888753316463160803997, −1.65196290367657739767103631887, −0.51092269099572287910079071898,
1.18551866908015971922614456941, 1.61450444403337656299925740886, 3.11649486796155157017523672696, 3.72275047826457630248821166216, 4.31334600879724889704186804431, 5.25443699986158129421127384433, 6.04218976959245953152140623554, 6.66817480820214026043513226131, 7.37531108897141827099665843771, 7.893463127453781428065205398208