Properties

Label 2-7200-8.5-c1-0-52
Degree $2$
Conductor $7200$
Sign $0.353 + 0.935i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 2.64i·11-s + 3·17-s + 2.64i·19-s + 4·23-s − 4·31-s + 10.5i·37-s + 5·41-s − 5.29i·43-s − 8·47-s + 9·49-s + 10.5i·53-s − 5.29i·59-s − 10.5i·61-s + 7.93i·67-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.797i·11-s + 0.727·17-s + 0.606i·19-s + 0.834·23-s − 0.718·31-s + 1.73i·37-s + 0.780·41-s − 0.806i·43-s − 1.16·47-s + 1.28·49-s + 1.45i·53-s − 0.688i·59-s − 1.35i·61-s + 0.969i·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.353 + 0.935i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.353 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.353 + 0.935i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (3601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ 0.353 + 0.935i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.155165278\)
\(L(\frac12)\) \(\approx\) \(1.155165278\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4T + 7T^{2} \)
11 \( 1 + 2.64iT - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 - 2.64iT - 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 10.5iT - 37T^{2} \)
41 \( 1 - 5T + 41T^{2} \)
43 \( 1 + 5.29iT - 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 10.5iT - 53T^{2} \)
59 \( 1 + 5.29iT - 59T^{2} \)
61 \( 1 + 10.5iT - 61T^{2} \)
67 \( 1 - 7.93iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 7T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 7.93iT - 83T^{2} \)
89 \( 1 - T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76966906916801567575331181722, −7.00360196890716709492514941033, −6.35454903039550236384234717936, −5.82190375134004176654692491211, −5.07866921797401900035613302297, −4.00966874107604532919841206406, −3.24767074610921818382542598378, −2.88969913656101096342440400305, −1.50240995446539057150027547488, −0.37715829738033988477180786741, 0.794007711180575904483242653977, 2.09774223390790935898246191101, 2.97076495291055448433773075295, 3.60134864047200454574852803727, 4.44266778776969521428835948562, 5.33223594574185730910439578439, 5.98121948140712594472202619560, 6.81093829382915835528228498357, 7.17836075354556133763065438995, 7.945154055141996264059185395877

Graph of the $Z$-function along the critical line