L(s) = 1 | + 0.732·7-s + 2i·11-s − 3.46i·13-s + 3.46·17-s + 0.535i·19-s + 6.19·23-s + 6.92i·29-s + 5.46·31-s − 2i·37-s − 1.46·41-s + 5.26i·43-s − 3.26·47-s − 6.46·49-s − 11.4i·53-s + 7.46i·59-s + ⋯ |
L(s) = 1 | + 0.276·7-s + 0.603i·11-s − 0.960i·13-s + 0.840·17-s + 0.122i·19-s + 1.29·23-s + 1.28i·29-s + 0.981·31-s − 0.328i·37-s − 0.228·41-s + 0.803i·43-s − 0.476·47-s − 0.923·49-s − 1.57i·53-s + 0.971i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.200943211\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.200943211\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 0.732T + 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 - 3.46T + 17T^{2} \) |
| 19 | \( 1 - 0.535iT - 19T^{2} \) |
| 23 | \( 1 - 6.19T + 23T^{2} \) |
| 29 | \( 1 - 6.92iT - 29T^{2} \) |
| 31 | \( 1 - 5.46T + 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 1.46T + 41T^{2} \) |
| 43 | \( 1 - 5.26iT - 43T^{2} \) |
| 47 | \( 1 + 3.26T + 47T^{2} \) |
| 53 | \( 1 + 11.4iT - 53T^{2} \) |
| 59 | \( 1 - 7.46iT - 59T^{2} \) |
| 61 | \( 1 - 8.92iT - 61T^{2} \) |
| 67 | \( 1 + 10.7iT - 67T^{2} \) |
| 71 | \( 1 - 5.46T + 71T^{2} \) |
| 73 | \( 1 + 7.46T + 73T^{2} \) |
| 79 | \( 1 - 1.07T + 79T^{2} \) |
| 83 | \( 1 - 1.26iT - 83T^{2} \) |
| 89 | \( 1 + 8.92T + 89T^{2} \) |
| 97 | \( 1 - 14.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.950191866537723788141299933678, −7.28459336672672253973631857986, −6.65737473069404178889023875957, −5.75934663024297788387983194931, −5.08407876486799013933822311377, −4.55985690545728024525193751384, −3.39685060049567578820883270883, −2.92421014296126352813731410517, −1.74409181101807960840247744029, −0.844582828836337705682473806206,
0.72127993693250806088246944841, 1.70296722530321838429599859013, 2.73830142421368923380013122667, 3.47763395559296021226023896024, 4.39513782897119132437353519885, 5.00022631833351081218365192928, 5.84829873108416047859093253909, 6.49807271510975320049162760828, 7.18328110436812171166681736976, 7.961456150166893298237478978601