L(s) = 1 | + 0.732·7-s + 2i·11-s − 3.46i·13-s + 3.46·17-s + 0.535i·19-s + 6.19·23-s + 6.92i·29-s + 5.46·31-s − 2i·37-s − 1.46·41-s + 5.26i·43-s − 3.26·47-s − 6.46·49-s − 11.4i·53-s + 7.46i·59-s + ⋯ |
L(s) = 1 | + 0.276·7-s + 0.603i·11-s − 0.960i·13-s + 0.840·17-s + 0.122i·19-s + 1.29·23-s + 1.28i·29-s + 0.981·31-s − 0.328i·37-s − 0.228·41-s + 0.803i·43-s − 0.476·47-s − 0.923·49-s − 1.57i·53-s + 0.971i·59-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(0.965−0.258i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(0.965−0.258i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
0.965−0.258i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(3601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), 0.965−0.258i)
|
Particular Values
L(1) |
≈ |
2.200943211 |
L(21) |
≈ |
2.200943211 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−0.732T+7T2 |
| 11 | 1−2iT−11T2 |
| 13 | 1+3.46iT−13T2 |
| 17 | 1−3.46T+17T2 |
| 19 | 1−0.535iT−19T2 |
| 23 | 1−6.19T+23T2 |
| 29 | 1−6.92iT−29T2 |
| 31 | 1−5.46T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+1.46T+41T2 |
| 43 | 1−5.26iT−43T2 |
| 47 | 1+3.26T+47T2 |
| 53 | 1+11.4iT−53T2 |
| 59 | 1−7.46iT−59T2 |
| 61 | 1−8.92iT−61T2 |
| 67 | 1+10.7iT−67T2 |
| 71 | 1−5.46T+71T2 |
| 73 | 1+7.46T+73T2 |
| 79 | 1−1.07T+79T2 |
| 83 | 1−1.26iT−83T2 |
| 89 | 1+8.92T+89T2 |
| 97 | 1−14.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.950191866537723788141299933678, −7.28459336672672253973631857986, −6.65737473069404178889023875957, −5.75934663024297788387983194931, −5.08407876486799013933822311377, −4.55985690545728024525193751384, −3.39685060049567578820883270883, −2.92421014296126352813731410517, −1.74409181101807960840247744029, −0.844582828836337705682473806206,
0.72127993693250806088246944841, 1.70296722530321838429599859013, 2.73830142421368923380013122667, 3.47763395559296021226023896024, 4.39513782897119132437353519885, 5.00022631833351081218365192928, 5.84829873108416047859093253909, 6.49807271510975320049162760828, 7.18328110436812171166681736976, 7.961456150166893298237478978601