L(s) = 1 | + 0.704·2-s − 3.11·3-s − 1.50·4-s − 2.19·6-s + 4.06·7-s − 2.46·8-s + 6.73·9-s − 0.231·11-s + 4.69·12-s − 2.35·13-s + 2.86·14-s + 1.27·16-s + 4.74·18-s + 7.38·19-s − 12.6·21-s − 0.162·22-s + 1.87·23-s + 7.69·24-s − 1.65·26-s − 11.6·27-s − 6.11·28-s + 4.04·29-s + 0.130·31-s + 5.82·32-s + 0.720·33-s − 10.1·36-s + 5.82·37-s + ⋯ |
L(s) = 1 | + 0.497·2-s − 1.80·3-s − 0.752·4-s − 0.896·6-s + 1.53·7-s − 0.872·8-s + 2.24·9-s − 0.0696·11-s + 1.35·12-s − 0.653·13-s + 0.764·14-s + 0.317·16-s + 1.11·18-s + 1.69·19-s − 2.76·21-s − 0.0346·22-s + 0.391·23-s + 1.57·24-s − 0.325·26-s − 2.24·27-s − 1.15·28-s + 0.751·29-s + 0.0234·31-s + 1.03·32-s + 0.125·33-s − 1.68·36-s + 0.957·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.353660405 |
L(21) |
≈ |
1.353660405 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1−0.704T+2T2 |
| 3 | 1+3.11T+3T2 |
| 7 | 1−4.06T+7T2 |
| 11 | 1+0.231T+11T2 |
| 13 | 1+2.35T+13T2 |
| 19 | 1−7.38T+19T2 |
| 23 | 1−1.87T+23T2 |
| 29 | 1−4.04T+29T2 |
| 31 | 1−0.130T+31T2 |
| 37 | 1−5.82T+37T2 |
| 41 | 1−8.10T+41T2 |
| 43 | 1−3.69T+43T2 |
| 47 | 1+1.30T+47T2 |
| 53 | 1+8.26T+53T2 |
| 59 | 1−2.29T+59T2 |
| 61 | 1−8.92T+61T2 |
| 67 | 1+14.5T+67T2 |
| 71 | 1−11.0T+71T2 |
| 73 | 1+0.471T+73T2 |
| 79 | 1+4.31T+79T2 |
| 83 | 1+15.4T+83T2 |
| 89 | 1−3.68T+89T2 |
| 97 | 1+9.00T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.69098731328964734914046824872, −7.21801102245718344093269707982, −6.19393456331555870520595172277, −5.57358615600817643389366537238, −5.07530673726586719572733676757, −4.65738556102620911247539313562, −4.06344893037472523954427351760, −2.78793533728328553857377158847, −1.37411412236156984834886127148, −0.68897636282364820749264082328,
0.68897636282364820749264082328, 1.37411412236156984834886127148, 2.78793533728328553857377158847, 4.06344893037472523954427351760, 4.65738556102620911247539313562, 5.07530673726586719572733676757, 5.57358615600817643389366537238, 6.19393456331555870520595172277, 7.21801102245718344093269707982, 7.69098731328964734914046824872