Properties

Label 2-85e2-1.1-c1-0-151
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.301·2-s + 1.06·3-s − 1.90·4-s − 0.320·6-s + 2.50·7-s + 1.17·8-s − 1.87·9-s + 2.44·11-s − 2.02·12-s + 5.61·13-s − 0.757·14-s + 3.46·16-s + 0.565·18-s − 7.13·19-s + 2.66·21-s − 0.737·22-s + 0.860·23-s + 1.25·24-s − 1.69·26-s − 5.17·27-s − 4.79·28-s + 3.75·29-s − 2.24·31-s − 3.40·32-s + 2.59·33-s + 3.57·36-s + 5.10·37-s + ⋯
L(s)  = 1  − 0.213·2-s + 0.612·3-s − 0.954·4-s − 0.130·6-s + 0.948·7-s + 0.416·8-s − 0.624·9-s + 0.737·11-s − 0.584·12-s + 1.55·13-s − 0.202·14-s + 0.865·16-s + 0.133·18-s − 1.63·19-s + 0.581·21-s − 0.157·22-s + 0.179·23-s + 0.255·24-s − 0.332·26-s − 0.995·27-s − 0.905·28-s + 0.696·29-s − 0.403·31-s − 0.601·32-s + 0.451·33-s + 0.596·36-s + 0.839·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.119175819\)
\(L(\frac12)\) \(\approx\) \(2.119175819\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 + 0.301T + 2T^{2} \)
3 \( 1 - 1.06T + 3T^{2} \)
7 \( 1 - 2.50T + 7T^{2} \)
11 \( 1 - 2.44T + 11T^{2} \)
13 \( 1 - 5.61T + 13T^{2} \)
19 \( 1 + 7.13T + 19T^{2} \)
23 \( 1 - 0.860T + 23T^{2} \)
29 \( 1 - 3.75T + 29T^{2} \)
31 \( 1 + 2.24T + 31T^{2} \)
37 \( 1 - 5.10T + 37T^{2} \)
41 \( 1 - 12.3T + 41T^{2} \)
43 \( 1 - 2.62T + 43T^{2} \)
47 \( 1 - 2.30T + 47T^{2} \)
53 \( 1 + 2.77T + 53T^{2} \)
59 \( 1 - 7.44T + 59T^{2} \)
61 \( 1 - 0.906T + 61T^{2} \)
67 \( 1 + 6.69T + 67T^{2} \)
71 \( 1 + 0.240T + 71T^{2} \)
73 \( 1 - 6.45T + 73T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 + 0.395T + 89T^{2} \)
97 \( 1 - 8.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.161339585460356989892509327284, −7.57195697588470159396244699213, −6.36795119091568670927793186205, −5.90851471545645057747241927238, −4.97589969500098693138478315652, −4.11544143978302115583809029922, −3.83758909066826132073363286268, −2.69437280553148601119245413826, −1.68903042077313396766041899494, −0.78736538511145422949606366253, 0.78736538511145422949606366253, 1.68903042077313396766041899494, 2.69437280553148601119245413826, 3.83758909066826132073363286268, 4.11544143978302115583809029922, 4.97589969500098693138478315652, 5.90851471545645057747241927238, 6.36795119091568670927793186205, 7.57195697588470159396244699213, 8.161339585460356989892509327284

Graph of the $Z$-function along the critical line