Properties

Label 2-85e2-1.1-c1-0-175
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.69·2-s − 0.699·3-s + 5.24·4-s − 1.88·6-s − 4.85·7-s + 8.74·8-s − 2.51·9-s + 2.43·11-s − 3.67·12-s + 1.74·13-s − 13.0·14-s + 13.0·16-s − 6.76·18-s + 0.0462·19-s + 3.39·21-s + 6.54·22-s + 2.68·23-s − 6.11·24-s + 4.71·26-s + 3.85·27-s − 25.4·28-s − 1.97·29-s + 2.91·31-s + 17.6·32-s − 1.70·33-s − 13.1·36-s + 3.44·37-s + ⋯
L(s)  = 1  + 1.90·2-s − 0.403·3-s + 2.62·4-s − 0.768·6-s − 1.83·7-s + 3.09·8-s − 0.836·9-s + 0.733·11-s − 1.05·12-s + 0.485·13-s − 3.49·14-s + 3.26·16-s − 1.59·18-s + 0.0106·19-s + 0.741·21-s + 1.39·22-s + 0.560·23-s − 1.24·24-s + 0.923·26-s + 0.741·27-s − 4.81·28-s − 0.367·29-s + 0.523·31-s + 3.12·32-s − 0.296·33-s − 2.19·36-s + 0.566·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.286132864\)
\(L(\frac12)\) \(\approx\) \(5.286132864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 2.69T + 2T^{2} \)
3 \( 1 + 0.699T + 3T^{2} \)
7 \( 1 + 4.85T + 7T^{2} \)
11 \( 1 - 2.43T + 11T^{2} \)
13 \( 1 - 1.74T + 13T^{2} \)
19 \( 1 - 0.0462T + 19T^{2} \)
23 \( 1 - 2.68T + 23T^{2} \)
29 \( 1 + 1.97T + 29T^{2} \)
31 \( 1 - 2.91T + 31T^{2} \)
37 \( 1 - 3.44T + 37T^{2} \)
41 \( 1 + 5.32T + 41T^{2} \)
43 \( 1 - 7.98T + 43T^{2} \)
47 \( 1 - 9.75T + 47T^{2} \)
53 \( 1 - 11.5T + 53T^{2} \)
59 \( 1 - 7.13T + 59T^{2} \)
61 \( 1 - 8.70T + 61T^{2} \)
67 \( 1 + 11.5T + 67T^{2} \)
71 \( 1 + 4.48T + 71T^{2} \)
73 \( 1 - 7.71T + 73T^{2} \)
79 \( 1 + 3.97T + 79T^{2} \)
83 \( 1 + 0.548T + 83T^{2} \)
89 \( 1 + 0.475T + 89T^{2} \)
97 \( 1 - 14.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36086771785428223509636720870, −6.84162812308423307969275318899, −6.22291146330679644266009619846, −5.86225020938118144115014846611, −5.23997389421635348831927488415, −4.16360311732626904270522270941, −3.69966251749363725798011038234, −2.96822493112704676211774353706, −2.39545663311251914667263970223, −0.875053636361439058937259334265, 0.875053636361439058937259334265, 2.39545663311251914667263970223, 2.96822493112704676211774353706, 3.69966251749363725798011038234, 4.16360311732626904270522270941, 5.23997389421635348831927488415, 5.86225020938118144115014846611, 6.22291146330679644266009619846, 6.84162812308423307969275318899, 7.36086771785428223509636720870

Graph of the $Z$-function along the critical line