Properties

Label 2-85e2-1.1-c1-0-393
Degree $2$
Conductor $7225$
Sign $-1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.88·2-s + 1.88·3-s + 1.55·4-s + 3.56·6-s + 0.335·7-s − 0.836·8-s + 0.569·9-s − 3.80·11-s + 2.94·12-s + 0.558·13-s + 0.632·14-s − 4.69·16-s + 1.07·18-s − 3.73·19-s + 0.633·21-s − 7.18·22-s + 1.24·23-s − 1.58·24-s + 1.05·26-s − 4.59·27-s + 0.521·28-s − 3.98·29-s − 9.36·31-s − 7.17·32-s − 7.19·33-s + 0.887·36-s + 6.77·37-s + ⋯
L(s)  = 1  + 1.33·2-s + 1.09·3-s + 0.778·4-s + 1.45·6-s + 0.126·7-s − 0.295·8-s + 0.189·9-s − 1.14·11-s + 0.848·12-s + 0.154·13-s + 0.169·14-s − 1.17·16-s + 0.253·18-s − 0.856·19-s + 0.138·21-s − 1.53·22-s + 0.259·23-s − 0.322·24-s + 0.206·26-s − 0.883·27-s + 0.0986·28-s − 0.740·29-s − 1.68·31-s − 1.26·32-s − 1.25·33-s + 0.147·36-s + 1.11·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.88T + 2T^{2} \)
3 \( 1 - 1.88T + 3T^{2} \)
7 \( 1 - 0.335T + 7T^{2} \)
11 \( 1 + 3.80T + 11T^{2} \)
13 \( 1 - 0.558T + 13T^{2} \)
19 \( 1 + 3.73T + 19T^{2} \)
23 \( 1 - 1.24T + 23T^{2} \)
29 \( 1 + 3.98T + 29T^{2} \)
31 \( 1 + 9.36T + 31T^{2} \)
37 \( 1 - 6.77T + 37T^{2} \)
41 \( 1 - 1.68T + 41T^{2} \)
43 \( 1 + 5.66T + 43T^{2} \)
47 \( 1 - 9.50T + 47T^{2} \)
53 \( 1 - 7.30T + 53T^{2} \)
59 \( 1 + 9.33T + 59T^{2} \)
61 \( 1 + 0.743T + 61T^{2} \)
67 \( 1 + 7.29T + 67T^{2} \)
71 \( 1 + 15.5T + 71T^{2} \)
73 \( 1 - 11.1T + 73T^{2} \)
79 \( 1 - 11.9T + 79T^{2} \)
83 \( 1 + 11.7T + 83T^{2} \)
89 \( 1 - 13.1T + 89T^{2} \)
97 \( 1 - 10.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64027052650438020094685611538, −6.81324709434217771930770458624, −5.86644428194017450752063374726, −5.44748645496610974723677577735, −4.58275986487422143192392608800, −3.91124466051000483294378648680, −3.21615478631743197588691421302, −2.57422302469991083216391374153, −1.89924217558148589626514521696, 0, 1.89924217558148589626514521696, 2.57422302469991083216391374153, 3.21615478631743197588691421302, 3.91124466051000483294378648680, 4.58275986487422143192392608800, 5.44748645496610974723677577735, 5.86644428194017450752063374726, 6.81324709434217771930770458624, 7.64027052650438020094685611538

Graph of the $Z$-function along the critical line