L(s) = 1 | + 1.88·2-s + 1.88·3-s + 1.55·4-s + 3.56·6-s + 0.335·7-s − 0.836·8-s + 0.569·9-s − 3.80·11-s + 2.94·12-s + 0.558·13-s + 0.632·14-s − 4.69·16-s + 1.07·18-s − 3.73·19-s + 0.633·21-s − 7.18·22-s + 1.24·23-s − 1.58·24-s + 1.05·26-s − 4.59·27-s + 0.521·28-s − 3.98·29-s − 9.36·31-s − 7.17·32-s − 7.19·33-s + 0.887·36-s + 6.77·37-s + ⋯ |
L(s) = 1 | + 1.33·2-s + 1.09·3-s + 0.778·4-s + 1.45·6-s + 0.126·7-s − 0.295·8-s + 0.189·9-s − 1.14·11-s + 0.848·12-s + 0.154·13-s + 0.169·14-s − 1.17·16-s + 0.253·18-s − 0.856·19-s + 0.138·21-s − 1.53·22-s + 0.259·23-s − 0.322·24-s + 0.206·26-s − 0.883·27-s + 0.0986·28-s − 0.740·29-s − 1.68·31-s − 1.26·32-s − 1.25·33-s + 0.147·36-s + 1.11·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1−1.88T+2T2 |
| 3 | 1−1.88T+3T2 |
| 7 | 1−0.335T+7T2 |
| 11 | 1+3.80T+11T2 |
| 13 | 1−0.558T+13T2 |
| 19 | 1+3.73T+19T2 |
| 23 | 1−1.24T+23T2 |
| 29 | 1+3.98T+29T2 |
| 31 | 1+9.36T+31T2 |
| 37 | 1−6.77T+37T2 |
| 41 | 1−1.68T+41T2 |
| 43 | 1+5.66T+43T2 |
| 47 | 1−9.50T+47T2 |
| 53 | 1−7.30T+53T2 |
| 59 | 1+9.33T+59T2 |
| 61 | 1+0.743T+61T2 |
| 67 | 1+7.29T+67T2 |
| 71 | 1+15.5T+71T2 |
| 73 | 1−11.1T+73T2 |
| 79 | 1−11.9T+79T2 |
| 83 | 1+11.7T+83T2 |
| 89 | 1−13.1T+89T2 |
| 97 | 1−10.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.64027052650438020094685611538, −6.81324709434217771930770458624, −5.86644428194017450752063374726, −5.44748645496610974723677577735, −4.58275986487422143192392608800, −3.91124466051000483294378648680, −3.21615478631743197588691421302, −2.57422302469991083216391374153, −1.89924217558148589626514521696, 0,
1.89924217558148589626514521696, 2.57422302469991083216391374153, 3.21615478631743197588691421302, 3.91124466051000483294378648680, 4.58275986487422143192392608800, 5.44748645496610974723677577735, 5.86644428194017450752063374726, 6.81324709434217771930770458624, 7.64027052650438020094685611538