Properties

Label 2-85e2-1.1-c1-0-235
Degree $2$
Conductor $7225$
Sign $-1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.499·2-s + 0.171·3-s − 1.75·4-s + 0.0854·6-s − 3.87·7-s − 1.87·8-s − 2.97·9-s + 2.93·11-s − 0.299·12-s + 0.983·13-s − 1.93·14-s + 2.56·16-s − 1.48·18-s + 2.56·19-s − 0.663·21-s + 1.46·22-s + 3.00·23-s − 0.320·24-s + 0.491·26-s − 1.02·27-s + 6.78·28-s − 0.549·29-s − 7.55·31-s + 5.02·32-s + 0.502·33-s + 5.20·36-s + 9.84·37-s + ⋯
L(s)  = 1  + 0.352·2-s + 0.0988·3-s − 0.875·4-s + 0.0349·6-s − 1.46·7-s − 0.661·8-s − 0.990·9-s + 0.884·11-s − 0.0865·12-s + 0.272·13-s − 0.516·14-s + 0.641·16-s − 0.349·18-s + 0.589·19-s − 0.144·21-s + 0.312·22-s + 0.626·23-s − 0.0654·24-s + 0.0962·26-s − 0.196·27-s + 1.28·28-s − 0.102·29-s − 1.35·31-s + 0.888·32-s + 0.0874·33-s + 0.866·36-s + 1.61·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - 0.499T + 2T^{2} \)
3 \( 1 - 0.171T + 3T^{2} \)
7 \( 1 + 3.87T + 7T^{2} \)
11 \( 1 - 2.93T + 11T^{2} \)
13 \( 1 - 0.983T + 13T^{2} \)
19 \( 1 - 2.56T + 19T^{2} \)
23 \( 1 - 3.00T + 23T^{2} \)
29 \( 1 + 0.549T + 29T^{2} \)
31 \( 1 + 7.55T + 31T^{2} \)
37 \( 1 - 9.84T + 37T^{2} \)
41 \( 1 - 7.40T + 41T^{2} \)
43 \( 1 - 8.27T + 43T^{2} \)
47 \( 1 + 10.9T + 47T^{2} \)
53 \( 1 - 3.58T + 53T^{2} \)
59 \( 1 - 0.305T + 59T^{2} \)
61 \( 1 + 6.80T + 61T^{2} \)
67 \( 1 - 5.09T + 67T^{2} \)
71 \( 1 + 3.60T + 71T^{2} \)
73 \( 1 - 5.01T + 73T^{2} \)
79 \( 1 + 12.4T + 79T^{2} \)
83 \( 1 + 8.12T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 - 4.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54391818468794712957359263584, −6.74508612474956786148519496787, −5.87099915934513582829024734743, −5.76024234589847308477892581575, −4.62136574920984009532582555643, −3.84124847785344265337283861868, −3.27928143359551965513272628421, −2.63935925775836193007545257251, −1.04682904165142744712515984622, 0, 1.04682904165142744712515984622, 2.63935925775836193007545257251, 3.27928143359551965513272628421, 3.84124847785344265337283861868, 4.62136574920984009532582555643, 5.76024234589847308477892581575, 5.87099915934513582829024734743, 6.74508612474956786148519496787, 7.54391818468794712957359263584

Graph of the $Z$-function along the critical line