L(s) = 1 | + 2.10·2-s − 1.80·3-s + 2.43·4-s − 3.80·6-s + 2.68·7-s + 0.906·8-s + 0.260·9-s − 0.975·11-s − 4.38·12-s − 2.65·13-s + 5.64·14-s − 2.95·16-s + 0.547·18-s + 0.676·19-s − 4.84·21-s − 2.05·22-s + 4.03·23-s − 1.63·24-s − 5.58·26-s + 4.94·27-s + 6.52·28-s + 10.0·29-s − 9.85·31-s − 8.02·32-s + 1.76·33-s + 0.632·36-s − 6.83·37-s + ⋯ |
L(s) = 1 | + 1.48·2-s − 1.04·3-s + 1.21·4-s − 1.55·6-s + 1.01·7-s + 0.320·8-s + 0.0866·9-s − 0.294·11-s − 1.26·12-s − 0.735·13-s + 1.50·14-s − 0.738·16-s + 0.129·18-s + 0.155·19-s − 1.05·21-s − 0.437·22-s + 0.841·23-s − 0.334·24-s − 1.09·26-s + 0.952·27-s + 1.23·28-s + 1.86·29-s − 1.77·31-s − 1.41·32-s + 0.306·33-s + 0.105·36-s − 1.12·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1−2.10T+2T2 |
| 3 | 1+1.80T+3T2 |
| 7 | 1−2.68T+7T2 |
| 11 | 1+0.975T+11T2 |
| 13 | 1+2.65T+13T2 |
| 19 | 1−0.676T+19T2 |
| 23 | 1−4.03T+23T2 |
| 29 | 1−10.0T+29T2 |
| 31 | 1+9.85T+31T2 |
| 37 | 1+6.83T+37T2 |
| 41 | 1−7.32T+41T2 |
| 43 | 1+8.90T+43T2 |
| 47 | 1+0.874T+47T2 |
| 53 | 1−2.84T+53T2 |
| 59 | 1+10.7T+59T2 |
| 61 | 1+2.07T+61T2 |
| 67 | 1−5.73T+67T2 |
| 71 | 1+1.12T+71T2 |
| 73 | 1+2.99T+73T2 |
| 79 | 1−0.409T+79T2 |
| 83 | 1+6.57T+83T2 |
| 89 | 1+5.62T+89T2 |
| 97 | 1+15.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.15199572042873426923719030765, −6.71692375353477261524836179701, −5.83185511581699808832932621160, −5.27518684066449789248504410538, −4.89817033771722332152238372187, −4.32896574244844023147954780882, −3.25782943229836725220958056894, −2.53863274215267220527749226992, −1.43767362153808180109493377230, 0,
1.43767362153808180109493377230, 2.53863274215267220527749226992, 3.25782943229836725220958056894, 4.32896574244844023147954780882, 4.89817033771722332152238372187, 5.27518684066449789248504410538, 5.83185511581699808832932621160, 6.71692375353477261524836179701, 7.15199572042873426923719030765