L(s) = 1 | + 2.30·2-s + 1.87·3-s + 3.31·4-s + 4.32·6-s − 1.54·7-s + 3.03·8-s + 0.525·9-s − 4.61·11-s + 6.22·12-s − 3.51·13-s − 3.56·14-s + 0.366·16-s + 1.21·18-s − 6.62·19-s − 2.90·21-s − 10.6·22-s + 2.59·23-s + 5.70·24-s − 8.11·26-s − 4.64·27-s − 5.12·28-s + 0.979·29-s − 1.22·31-s − 5.22·32-s − 8.67·33-s + 1.74·36-s − 0.407·37-s + ⋯ |
L(s) = 1 | + 1.63·2-s + 1.08·3-s + 1.65·4-s + 1.76·6-s − 0.584·7-s + 1.07·8-s + 0.175·9-s − 1.39·11-s + 1.79·12-s − 0.975·13-s − 0.952·14-s + 0.0916·16-s + 0.285·18-s − 1.51·19-s − 0.633·21-s − 2.27·22-s + 0.541·23-s + 1.16·24-s − 1.59·26-s − 0.894·27-s − 0.968·28-s + 0.181·29-s − 0.219·31-s − 0.923·32-s − 1.50·33-s + 0.290·36-s − 0.0670·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1−2.30T+2T2 |
| 3 | 1−1.87T+3T2 |
| 7 | 1+1.54T+7T2 |
| 11 | 1+4.61T+11T2 |
| 13 | 1+3.51T+13T2 |
| 19 | 1+6.62T+19T2 |
| 23 | 1−2.59T+23T2 |
| 29 | 1−0.979T+29T2 |
| 31 | 1+1.22T+31T2 |
| 37 | 1+0.407T+37T2 |
| 41 | 1−10.2T+41T2 |
| 43 | 1−4.24T+43T2 |
| 47 | 1+3.99T+47T2 |
| 53 | 1−1.75T+53T2 |
| 59 | 1−1.56T+59T2 |
| 61 | 1−13.9T+61T2 |
| 67 | 1+8.84T+67T2 |
| 71 | 1−1.29T+71T2 |
| 73 | 1+9.77T+73T2 |
| 79 | 1+10.9T+79T2 |
| 83 | 1−12.6T+83T2 |
| 89 | 1+8.62T+89T2 |
| 97 | 1+5.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43418610277498003158880491987, −6.80477177857529430971150782309, −5.96143762189135616156220705261, −5.37309862933302503204575166392, −4.58149543522910383505237963294, −3.97658564194934754759356611376, −3.05326083649127736989621646236, −2.63903144131573663168592884682, −2.09898253509625283259129863129, 0,
2.09898253509625283259129863129, 2.63903144131573663168592884682, 3.05326083649127736989621646236, 3.97658564194934754759356611376, 4.58149543522910383505237963294, 5.37309862933302503204575166392, 5.96143762189135616156220705261, 6.80477177857529430971150782309, 7.43418610277498003158880491987