L(s) = 1 | − 1.74·2-s + 0.598·3-s + 1.03·4-s − 1.04·6-s − 1.03·7-s + 1.68·8-s − 2.64·9-s + 0.0764·11-s + 0.620·12-s − 2.86·13-s + 1.80·14-s − 4.99·16-s + 4.60·18-s + 4.19·19-s − 0.621·21-s − 0.133·22-s + 5.95·23-s + 1.00·24-s + 4.98·26-s − 3.37·27-s − 1.07·28-s − 0.0884·29-s − 2.42·31-s + 5.34·32-s + 0.0457·33-s − 2.73·36-s − 9.51·37-s + ⋯ |
L(s) = 1 | − 1.23·2-s + 0.345·3-s + 0.517·4-s − 0.425·6-s − 0.392·7-s + 0.594·8-s − 0.880·9-s + 0.0230·11-s + 0.178·12-s − 0.793·13-s + 0.483·14-s − 1.24·16-s + 1.08·18-s + 0.961·19-s − 0.135·21-s − 0.0284·22-s + 1.24·23-s + 0.205·24-s + 0.977·26-s − 0.650·27-s − 0.203·28-s − 0.0164·29-s − 0.435·31-s + 0.945·32-s + 0.00796·33-s − 0.455·36-s − 1.56·37-s + ⋯ |
Λ(s)=(=(7225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1 |
good | 2 | 1+1.74T+2T2 |
| 3 | 1−0.598T+3T2 |
| 7 | 1+1.03T+7T2 |
| 11 | 1−0.0764T+11T2 |
| 13 | 1+2.86T+13T2 |
| 19 | 1−4.19T+19T2 |
| 23 | 1−5.95T+23T2 |
| 29 | 1+0.0884T+29T2 |
| 31 | 1+2.42T+31T2 |
| 37 | 1+9.51T+37T2 |
| 41 | 1−8.37T+41T2 |
| 43 | 1+0.866T+43T2 |
| 47 | 1−8.33T+47T2 |
| 53 | 1−4.09T+53T2 |
| 59 | 1+9.16T+59T2 |
| 61 | 1+0.288T+61T2 |
| 67 | 1−12.8T+67T2 |
| 71 | 1+13.2T+71T2 |
| 73 | 1−6.54T+73T2 |
| 79 | 1−10.4T+79T2 |
| 83 | 1−9.70T+83T2 |
| 89 | 1−0.106T+89T2 |
| 97 | 1+8.56T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.57509174528457394984270785460, −7.27754977926065818306541520581, −6.42285708455959258008478125668, −5.42408332677987315037096629999, −4.87515460727177752847276139194, −3.74729457157198604399940156233, −2.93528865007478104664663021416, −2.16695100387509996963540852323, −1.03099152099989864544856515130, 0,
1.03099152099989864544856515130, 2.16695100387509996963540852323, 2.93528865007478104664663021416, 3.74729457157198604399940156233, 4.87515460727177752847276139194, 5.42408332677987315037096629999, 6.42285708455959258008478125668, 7.27754977926065818306541520581, 7.57509174528457394984270785460