L(s) = 1 | − 2.32i·2-s − 3.11·3-s − 3.39·4-s + 7.22i·6-s + (2.50 − 2.50i)7-s + 3.23i·8-s + 6.68·9-s + (2.71 − 2.71i)11-s + 10.5·12-s + (2.88 − 2.88i)13-s + (−5.81 − 5.81i)14-s + 0.734·16-s − 4.08i·17-s − 15.5i·18-s + (3.71 + 3.71i)19-s + ⋯ |
L(s) = 1 | − 1.64i·2-s − 1.79·3-s − 1.69·4-s + 2.95i·6-s + (0.945 − 0.945i)7-s + 1.14i·8-s + 2.22·9-s + (0.817 − 0.817i)11-s + 3.05·12-s + (0.798 − 0.798i)13-s + (−1.55 − 1.55i)14-s + 0.183·16-s − 0.991i·17-s − 3.66i·18-s + (0.851 + 0.851i)19-s + ⋯ |
Λ(s)=(=(725s/2ΓC(s)L(s)(−0.939−0.341i)Λ(2−s)
Λ(s)=(=(725s/2ΓC(s+1/2)L(s)(−0.939−0.341i)Λ(1−s)
Degree: |
2 |
Conductor: |
725
= 52⋅29
|
Sign: |
−0.939−0.341i
|
Analytic conductor: |
5.78915 |
Root analytic conductor: |
2.40606 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ725(568,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 725, ( :1/2), −0.939−0.341i)
|
Particular Values
L(1) |
≈ |
0.160255+0.910282i |
L(21) |
≈ |
0.160255+0.910282i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 29 | 1+(−3.51+4.07i)T |
good | 2 | 1+2.32iT−2T2 |
| 3 | 1+3.11T+3T2 |
| 7 | 1+(−2.50+2.50i)T−7iT2 |
| 11 | 1+(−2.71+2.71i)T−11iT2 |
| 13 | 1+(−2.88+2.88i)T−13iT2 |
| 17 | 1+4.08iT−17T2 |
| 19 | 1+(−3.71−3.71i)T+19iT2 |
| 23 | 1+(−2.82−2.82i)T+23iT2 |
| 31 | 1+(−1.31+1.31i)T−31iT2 |
| 37 | 1−7.39T+37T2 |
| 41 | 1+(1.29+1.29i)T+41iT2 |
| 43 | 1+6.79T+43T2 |
| 47 | 1+12.0T+47T2 |
| 53 | 1+(−3.85−3.85i)T+53iT2 |
| 59 | 1+0.511iT−59T2 |
| 61 | 1+(−4.83+4.83i)T−61iT2 |
| 67 | 1+(−5.02−5.02i)T+67iT2 |
| 71 | 1−6.77iT−71T2 |
| 73 | 1−5.31iT−73T2 |
| 79 | 1+(8.66+8.66i)T+79iT2 |
| 83 | 1+(8.31+8.31i)T+83iT2 |
| 89 | 1+(4.54+4.54i)T+89iT2 |
| 97 | 1+13.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20823812997379785265924128451, −9.773737316153786317473637564594, −8.363770627148565789752562472010, −7.21943726552328666623301938951, −6.08910496797383430868775060384, −5.13179573203666084575249409245, −4.31230878001516184282380482180, −3.36733718386852788580156100215, −1.30535133733217813200189201215, −0.797908907829593715444239254344,
1.47034089576459317219466999155, 4.34049948599834427583192613746, 4.94153785646360319090891099089, 5.63528604408041664788519143900, 6.66453337542988402591095728223, 6.76598339062572466476955235970, 8.124917966005659538497544067382, 8.920091058327962105248084705100, 9.873011368083252466584519849674, 11.18088986614711944645040563338