Properties

Label 2-728-13.10-c1-0-14
Degree $2$
Conductor $728$
Sign $0.161 + 0.986i$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0150 + 0.0261i)3-s − 0.691i·5-s + (−0.866 − 0.5i)7-s + (1.49 − 2.59i)9-s + (4.62 − 2.66i)11-s + (−3.55 + 0.629i)13-s + (0.0180 − 0.0104i)15-s + (−2.67 + 4.63i)17-s + (−3.86 − 2.23i)19-s − 0.0301i·21-s + (−2.95 − 5.12i)23-s + 4.52·25-s + 0.181·27-s + (−0.0499 − 0.0865i)29-s − 10.4i·31-s + ⋯
L(s)  = 1  + (0.00871 + 0.0150i)3-s − 0.309i·5-s + (−0.327 − 0.188i)7-s + (0.499 − 0.865i)9-s + (1.39 − 0.804i)11-s + (−0.984 + 0.174i)13-s + (0.00466 − 0.00269i)15-s + (−0.648 + 1.12i)17-s + (−0.887 − 0.512i)19-s − 0.00658i·21-s + (−0.617 − 1.06i)23-s + 0.904·25-s + 0.0348·27-s + (−0.00927 − 0.0160i)29-s − 1.87i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.161 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.161 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $0.161 + 0.986i$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{728} (673, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ 0.161 + 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.03596 - 0.879888i\)
\(L(\frac12)\) \(\approx\) \(1.03596 - 0.879888i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (0.866 + 0.5i)T \)
13 \( 1 + (3.55 - 0.629i)T \)
good3 \( 1 + (-0.0150 - 0.0261i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + 0.691iT - 5T^{2} \)
11 \( 1 + (-4.62 + 2.66i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (2.67 - 4.63i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.86 + 2.23i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (2.95 + 5.12i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.0499 + 0.0865i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 10.4iT - 31T^{2} \)
37 \( 1 + (-5.37 + 3.10i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-7.50 + 4.33i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-3.42 + 5.92i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 - 4.94iT - 47T^{2} \)
53 \( 1 + 5.49T + 53T^{2} \)
59 \( 1 + (-6.31 - 3.64i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.0818 + 0.141i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (11.2 - 6.48i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (4.35 + 2.51i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 - 12.8iT - 73T^{2} \)
79 \( 1 - 8.12T + 79T^{2} \)
83 \( 1 + 11.0iT - 83T^{2} \)
89 \( 1 + (-1.68 + 0.970i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-15.8 - 9.15i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15759066604450764125446000841, −9.138560459458672603070811391983, −8.824117956269984626200684488894, −7.53405528331494686749813918937, −6.47227671403744190223280503387, −6.08649159016698927613905232333, −4.34121868507540704387108958861, −3.96591643718808607247082036698, −2.36391025887752896744804329131, −0.72337146603765723112317076703, 1.71139241255683237059950520803, 2.88454786563821146866608576597, 4.29133648805382855880611513825, 4.99754119145837979041974050560, 6.39137424896062799870881894051, 7.05768195209904372374148876401, 7.84218737041494844414111578971, 9.091676624535626007923134468334, 9.692071756719286720343320815124, 10.49825532610852868091742621449

Graph of the $Z$-function along the critical line