L(s) = 1 | + (0.0150 + 0.0261i)3-s − 0.691i·5-s + (−0.866 − 0.5i)7-s + (1.49 − 2.59i)9-s + (4.62 − 2.66i)11-s + (−3.55 + 0.629i)13-s + (0.0180 − 0.0104i)15-s + (−2.67 + 4.63i)17-s + (−3.86 − 2.23i)19-s − 0.0301i·21-s + (−2.95 − 5.12i)23-s + 4.52·25-s + 0.181·27-s + (−0.0499 − 0.0865i)29-s − 10.4i·31-s + ⋯ |
L(s) = 1 | + (0.00871 + 0.0150i)3-s − 0.309i·5-s + (−0.327 − 0.188i)7-s + (0.499 − 0.865i)9-s + (1.39 − 0.804i)11-s + (−0.984 + 0.174i)13-s + (0.00466 − 0.00269i)15-s + (−0.648 + 1.12i)17-s + (−0.887 − 0.512i)19-s − 0.00658i·21-s + (−0.617 − 1.06i)23-s + 0.904·25-s + 0.0348·27-s + (−0.00927 − 0.0160i)29-s − 1.87i·31-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(0.161+0.986i)Λ(2−s)
Λ(s)=(=(728s/2ΓC(s+1/2)L(s)(0.161+0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
0.161+0.986i
|
Analytic conductor: |
5.81310 |
Root analytic conductor: |
2.41103 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :1/2), 0.161+0.986i)
|
Particular Values
L(1) |
≈ |
1.03596−0.879888i |
L(21) |
≈ |
1.03596−0.879888i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(3.55−0.629i)T |
good | 3 | 1+(−0.0150−0.0261i)T+(−1.5+2.59i)T2 |
| 5 | 1+0.691iT−5T2 |
| 11 | 1+(−4.62+2.66i)T+(5.5−9.52i)T2 |
| 17 | 1+(2.67−4.63i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.86+2.23i)T+(9.5+16.4i)T2 |
| 23 | 1+(2.95+5.12i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.0499+0.0865i)T+(−14.5+25.1i)T2 |
| 31 | 1+10.4iT−31T2 |
| 37 | 1+(−5.37+3.10i)T+(18.5−32.0i)T2 |
| 41 | 1+(−7.50+4.33i)T+(20.5−35.5i)T2 |
| 43 | 1+(−3.42+5.92i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.94iT−47T2 |
| 53 | 1+5.49T+53T2 |
| 59 | 1+(−6.31−3.64i)T+(29.5+51.0i)T2 |
| 61 | 1+(−0.0818+0.141i)T+(−30.5−52.8i)T2 |
| 67 | 1+(11.2−6.48i)T+(33.5−58.0i)T2 |
| 71 | 1+(4.35+2.51i)T+(35.5+61.4i)T2 |
| 73 | 1−12.8iT−73T2 |
| 79 | 1−8.12T+79T2 |
| 83 | 1+11.0iT−83T2 |
| 89 | 1+(−1.68+0.970i)T+(44.5−77.0i)T2 |
| 97 | 1+(−15.8−9.15i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15759066604450764125446000841, −9.138560459458672603070811391983, −8.824117956269984626200684488894, −7.53405528331494686749813918937, −6.47227671403744190223280503387, −6.08649159016698927613905232333, −4.34121868507540704387108958861, −3.96591643718808607247082036698, −2.36391025887752896744804329131, −0.72337146603765723112317076703,
1.71139241255683237059950520803, 2.88454786563821146866608576597, 4.29133648805382855880611513825, 4.99754119145837979041974050560, 6.39137424896062799870881894051, 7.05768195209904372374148876401, 7.84218737041494844414111578971, 9.091676624535626007923134468334, 9.692071756719286720343320815124, 10.49825532610852868091742621449