L(s) = 1 | + 3·2-s + 9·4-s + 6·5-s + 18·8-s + 18·10-s + 12·11-s + 36·16-s − 18·17-s + 6·19-s + 54·20-s + 36·22-s + 15·23-s + 36·25-s + 12·29-s + 57·32-s − 54·34-s + 6·37-s + 18·38-s + 108·40-s + 15·41-s + 108·44-s + 45·46-s + 21·47-s + 27·49-s + 108·50-s − 18·53-s + 72·55-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 9/2·4-s + 2.68·5-s + 6.36·8-s + 5.69·10-s + 3.61·11-s + 9·16-s − 4.36·17-s + 1.37·19-s + 12.0·20-s + 7.67·22-s + 3.12·23-s + 36/5·25-s + 2.22·29-s + 10.0·32-s − 9.26·34-s + 0.986·37-s + 2.91·38-s + 17.0·40-s + 2.34·41-s + 16.2·44-s + 6.63·46-s + 3.06·47-s + 27/7·49-s + 15.2·50-s − 2.47·53-s + 9.70·55-s + ⋯ |
Λ(s)=(=((372)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((372)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
628.4066841 |
L(21) |
≈ |
628.4066841 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | (1−3pT+9pT2−9p2T3+27pT4−69T5+91T6−69pT7+27p3T8−9p5T9+9p5T10−3p6T11+p6T12)(1+3T−9T3−9T4+3p2T5+37T6+3p3T7−9p2T8−9p3T9+3p5T11+p6T12) |
| 5 | 1−6T+36T3+99T4−357T5−952T6+1827T7+1386pT8−4347T9−48204T10+16911T11+218649T12+16911pT13−48204p2T14−4347p3T15+1386p5T16+1827p5T17−952p6T18−357p7T19+99p8T20+36p9T21−6p11T23+p12T24 |
| 7 | 1−27T2+22T3+54pT4−513T5−3482T6+6291T7+24327T8−44480T9−136944T10+135972T11+830503T12+135972pT13−136944p2T14−44480p3T15+24327p4T16+6291p5T17−3482p6T18−513p7T19+54p9T20+22p9T21−27p10T22+p12T24 |
| 11 | 1−12T+27T2+108T3+477T4−6807T5+5438T6+35433T7+267453T8−1206441T9−948924T10−2888901T11+56650647T12−2888901pT13−948924p2T14−1206441p3T15+267453p4T16+35433p5T17+5438p6T18−6807p7T19+477p8T20+108p9T21+27p10T22−12p11T23+p12T24 |
| 13 | 1−54T2+4T3+1539T4−243T5−30464T6+10071T7+478116T8−184097T9−508680pT10+1167993T11+87287617T12+1167993pT13−508680p3T14−184097p3T15+478116p4T16+10071p5T17−30464p6T18−243p7T19+1539p8T20+4p9T21−54p10T22+p12T24 |
| 17 | (1+9T+111T2+711T3+4893T4+23337T5+112057T6+23337pT7+4893p2T8+711p3T9+111p4T10+9p5T11+p6T12)2 |
| 19 | (1−3T+84T2−13pT3+3303T4−8784T5+4137pT6−8784pT7+3303p2T8−13p4T9+84p4T10−3p5T11+p6T12)2 |
| 23 | 1−15T+27T2+18pT3+801T4−21354T5−42640T6+483003T7+3508776T8−14314293T9−94988115T10+69646203T11+2948759967T12+69646203pT13−94988115p2T14−14314293p3T15+3508776p4T16+483003p5T17−42640p6T18−21354p7T19+801p8T20+18p10T21+27p10T22−15p11T23+p12T24 |
| 29 | 1−12T−27T2+504T3+3204T4−21342T5−148921T6+408474T7+5554593T8−4058532T9−155078586T10+79701552T11+3428546241T12+79701552pT13−155078586p2T14−4058532p3T15+5554593p4T16+408474p5T17−148921p6T18−21342p7T19+3204p8T20+504p9T21−27p10T22−12p11T23+p12T24 |
| 31 | 1−135T2+382T3+10314T4−43443T5−449990T6+2709261T7+12356577T8−91141832T9−164934846T10+1306511154T11+1847979163T12+1306511154pT13−164934846p2T14−91141832p3T15+12356577p4T16+2709261p5T17−449990p6T18−43443p7T19+10314p8T20+382p9T21−135p10T22+p12T24 |
| 37 | (1−3T+165T2−301T3+12591T4−16749T5+586203T6−16749pT7+12591p2T8−301p3T9+165p4T10−3p5T11+p6T12)2 |
| 41 | 1−15T−27T2+1170T3+1530T4−58866T5−182689T6+52668pT7+15249888T8−49008051T9−1007393688T10+789854886T11+45702053715T12+789854886pT13−1007393688p2T14−49008051p3T15+15249888p4T16+52668p6T17−182689p6T18−58866p7T19+1530p8T20+1170p9T21−27p10T22−15p11T23+p12T24 |
| 43 | 1−162T2+346T3+12663T4−42741T5−16529pT6+1785402T7+38571471T8−22355525T9−51653403pT10−123766974T11+109827512425T12−123766974pT13−51653403p3T14−22355525p3T15+38571471p4T16+1785402p5T17−16529p7T18−42741p7T19+12663p8T20+346p9T21−162p10T22+p12T24 |
| 47 | 1−21T+54T2+1287T3+153T4−120774T5+929T6+5893155T7+18070200T8−283676931T9−994660839T10+2777876802T11+83734836753T12+2777876802pT13−994660839p2T14−283676931p3T15+18070200p4T16+5893155p5T17+929p6T18−120774p7T19+153p8T20+1287p9T21+54p10T22−21p11T23+p12T24 |
| 53 | (1+9T+210T2+1872T3+23856T4+168327T5+1634317T6+168327pT7+23856p2T8+1872p3T9+210p4T10+9p5T11+p6T12)2 |
| 59 | 1−24T+81T2+1422T3+5742T4−212163T5−338506T6+10007865T7+84876597T8−387253440T9−9088783722T10+17187276150T11+501529877931T12+17187276150pT13−9088783722p2T14−387253440p3T15+84876597p4T16+10007865p5T17−338506p6T18−212163p7T19+5742p8T20+1422p9T21+81p10T22−24p11T23+p12T24 |
| 61 | 1−9T−126T2+2587T3−3393T4−203454T5+1847611T6−1670085T7−92881458T8+1260734047T9−5845841559T10−47792391678T11+847544676913T12−47792391678pT13−5845841559p2T14+1260734047p3T15−92881458p4T16−1670085p5T17+1847611p6T18−203454p7T19−3393p8T20+2587p9T21−126p10T22−9p11T23+p12T24 |
| 67 | 1−9T−207T2+1570T3+26280T4−135900T5−2376791T6+4866426T7+185070636T8+49256035T9−13259790540T10−6361835544T11+906839351569T12−6361835544pT13−13259790540p2T14+49256035p3T15+185070636p4T16+4866426p5T17−2376791p6T18−135900p7T19+26280p8T20+1570p9T21−207p10T22−9p11T23+p12T24 |
| 71 | (1+27T+651T2+10071T3+138813T4+1464345T5+13863913T6+1464345pT7+138813p2T8+10071p3T9+651p4T10+27p5T11+p6T12)2 |
| 73 | (1+6T+264T2+1940T3+33111T4+266427T5+2798097T6+266427pT7+33111p2T8+1940p3T9+264p4T10+6p5T11+p6T12)2 |
| 79 | 1−297T2−140T3+45441T4+43659T5−4620914T6−8783775T7+361258029T8+880271539T9−25327300482T10−33251116437T11+1905100948891T12−33251116437pT13−25327300482p2T14+880271539p3T15+361258029p4T16−8783775p5T17−4620914p6T18+43659p7T19+45441p8T20−140p9T21−297p10T22+p12T24 |
| 83 | 1−12T−189T2+3654T3+6012T4−400611T5+1007894T6+15445989T7−7453143T8+430522020T9−18841320882T10−37064522502T11+2397381696579T12−37064522502pT13−18841320882p2T14+430522020p3T15−7453143p4T16+15445989p5T17+1007894p6T18−400611p7T19+6012p8T20+3654p9T21−189p10T22−12p11T23+p12T24 |
| 89 | (1+9T+354T2+2979T3+59703T4+469404T5+6461593T6+469404pT7+59703p2T8+2979p3T9+354p4T10+9p5T11+p6T12)2 |
| 97 | 1−378T2+1426T3+75303T4−455031T5−9407879T6+74070450T7+845097381T8−6894378191T9−59284839627T10+283150215594T11+4702665738871T12+283150215594pT13−59284839627p2T14−6894378191p3T15+845097381p4T16+74070450p5T17−9407879p6T18−455031p7T19+75303p8T20+1426p9T21−378p10T22+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.28088289268776676325307816717, −3.25752156138132276717629517140, −3.12456900298000725644776433212, −3.11281594885382635757352578998, −2.98433430494727650872659411881, −2.85492097412194394475470933253, −2.79064842152111645317478439527, −2.75631751707742437083883440968, −2.58996885623054026515537616075, −2.28348785776799466059598986503, −2.25313220721820892132585390267, −2.24405101095848888143818647200, −2.22192789381039815608951698888, −2.21782955143084303662489989591, −2.07403319719057158188113461016, −1.79643752401356964227417481285, −1.62941111586927446646497615605, −1.52509393782447354299499772960, −1.34277314082369940747271543897, −1.21746995324517052354198969529, −1.05191670232996038524504172276, −0.976260125419474848159466710257, −0.942077806082286805687160254170, −0.826329777473242051696321746943, −0.57693279686071007175702932035,
0.57693279686071007175702932035, 0.826329777473242051696321746943, 0.942077806082286805687160254170, 0.976260125419474848159466710257, 1.05191670232996038524504172276, 1.21746995324517052354198969529, 1.34277314082369940747271543897, 1.52509393782447354299499772960, 1.62941111586927446646497615605, 1.79643752401356964227417481285, 2.07403319719057158188113461016, 2.21782955143084303662489989591, 2.22192789381039815608951698888, 2.24405101095848888143818647200, 2.25313220721820892132585390267, 2.28348785776799466059598986503, 2.58996885623054026515537616075, 2.75631751707742437083883440968, 2.79064842152111645317478439527, 2.85492097412194394475470933253, 2.98433430494727650872659411881, 3.11281594885382635757352578998, 3.12456900298000725644776433212, 3.25752156138132276717629517140, 3.28088289268776676325307816717
Plot not available for L-functions of degree greater than 10.