L(s) = 1 | + (−1.53 − 1.28i)4-s + (−0.766 + 0.642i)7-s + (−4.69 + 1.71i)13-s + (0.694 + 3.93i)16-s + (3.5 + 6.06i)19-s + (4.69 + 1.71i)25-s + 2·28-s + (−3.06 − 2.57i)31-s + (−5.5 + 9.52i)37-s + (1.38 + 7.87i)43-s + (−1.04 + 5.90i)49-s + (9.39 + 3.42i)52-s + (−0.766 + 0.642i)61-s + (4.00 − 6.92i)64-s + (−4.69 + 1.71i)67-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)4-s + (−0.289 + 0.242i)7-s + (−1.30 + 0.474i)13-s + (0.173 + 0.984i)16-s + (0.802 + 1.39i)19-s + (0.939 + 0.342i)25-s + 0.377·28-s + (−0.550 − 0.461i)31-s + (−0.904 + 1.56i)37-s + (0.211 + 1.20i)43-s + (−0.148 + 0.844i)49-s + (1.30 + 0.474i)52-s + (−0.0980 + 0.0823i)61-s + (0.500 − 0.866i)64-s + (−0.574 + 0.208i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0581 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0581 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.478790 + 0.507488i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.478790 + 0.507488i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.53 + 1.28i)T^{2} \) |
| 5 | \( 1 + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (0.766 - 0.642i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (-10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (4.69 - 1.71i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 - 6.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (3.06 + 2.57i)T + (5.38 + 30.5i)T^{2} \) |
| 37 | \( 1 + (5.5 - 9.52i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (-1.38 - 7.87i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (0.766 - 0.642i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (4.69 - 1.71i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.5 - 6.06i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (15.9 + 5.81i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.29 + 18.7i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32143897633072818669263065698, −9.762766266162477135934942651623, −9.105067976721551790449149782612, −8.119174329938685102619063864012, −7.11994924562053531194727136750, −6.04572048166024365926061055872, −5.19740217125182222965565813465, −4.35666792485979001349701728828, −3.06786296204435527771850437524, −1.50235869957726741863936480270,
0.37773775011047904446030288029, 2.60294011361708084539319257101, 3.57735746289543123429592203540, 4.75073829087518742391180276142, 5.39693270257026677572625769455, 7.02798337675798648607341013894, 7.41171798224554656905746769997, 8.595155800264143065080320370482, 9.245373993513235873386847542572, 10.04436563882172404286203390651