L(s) = 1 | + (−1.20 + 0.439i)2-s + (−0.266 + 0.223i)4-s + (0.0775 + 0.439i)5-s + (−2.70 − 2.27i)7-s + (1.50 − 2.61i)8-s + (−0.286 − 0.497i)10-s + (−0.482 + 2.73i)11-s + (−3.09 − 1.12i)13-s + (4.26 + 1.55i)14-s + (−0.553 + 3.13i)16-s + (3.51 + 6.09i)17-s + (2.59 − 4.49i)19-s + (−0.118 − 0.0996i)20-s + (−0.620 − 3.51i)22-s + (5.57 − 4.67i)23-s + ⋯ |
L(s) = 1 | + (−0.854 + 0.310i)2-s + (−0.133 + 0.111i)4-s + (0.0346 + 0.196i)5-s + (−1.02 − 0.858i)7-s + (0.533 − 0.923i)8-s + (−0.0907 − 0.157i)10-s + (−0.145 + 0.825i)11-s + (−0.857 − 0.312i)13-s + (1.14 + 0.415i)14-s + (−0.138 + 0.784i)16-s + (0.853 + 1.47i)17-s + (0.594 − 1.03i)19-s + (−0.0265 − 0.0222i)20-s + (−0.132 − 0.750i)22-s + (1.16 − 0.975i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.802−0.597i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.802−0.597i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.802−0.597i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.802−0.597i)
|
Particular Values
L(1) |
≈ |
0.679275+0.225087i |
L(21) |
≈ |
0.679275+0.225087i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(1.20−0.439i)T+(1.53−1.28i)T2 |
| 5 | 1+(−0.0775−0.439i)T+(−4.69+1.71i)T2 |
| 7 | 1+(2.70+2.27i)T+(1.21+6.89i)T2 |
| 11 | 1+(0.482−2.73i)T+(−10.3−3.76i)T2 |
| 13 | 1+(3.09+1.12i)T+(9.95+8.35i)T2 |
| 17 | 1+(−3.51−6.09i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.59+4.49i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−5.57+4.67i)T+(3.99−22.6i)T2 |
| 29 | 1+(3.40−1.23i)T+(22.2−18.6i)T2 |
| 31 | 1+(1.48−1.24i)T+(5.38−30.5i)T2 |
| 37 | 1+(−1.61−2.79i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.56−1.66i)T+(31.4+26.3i)T2 |
| 43 | 1+(1−5.67i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−2.31−1.93i)T+(8.16+46.2i)T2 |
| 53 | 1−8.77T+53T2 |
| 59 | 1+(−0.514−2.91i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−6.04−5.06i)T+(10.5+60.0i)T2 |
| 67 | 1+(−8.86−3.22i)T+(51.3+43.0i)T2 |
| 71 | 1+(2.65+4.59i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.777+1.34i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−11.1+4.07i)T+(60.5−50.7i)T2 |
| 83 | 1+(−15.2+5.56i)T+(63.5−53.3i)T2 |
| 89 | 1+(9.21−15.9i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−1.75+9.96i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23613214312298838295366406632, −9.661747669377858401354812157025, −8.857157595068361199209231254682, −7.78832107290762916404529719991, −7.12708747277902394542599839353, −6.53040784018095790970305354993, −4.99847828683696960396067708761, −3.96293570155094689995839303667, −2.86533934677251544714233457288, −0.856851872084023224857245447313,
0.75673667439372483522270822151, 2.42153069496494517170434371515, 3.46117418656772904146565702428, 5.26561989792676168036002211020, 5.54207975453760841746800612663, 7.03681072558805266378757326664, 7.86577905320871287402887953761, 9.018239789769627059613325031256, 9.378252914789455179128444531897, 9.975797277097905897177038779843