Properties

Label 2-3e6-3.2-c2-0-35
Degree $2$
Conductor $729$
Sign $-i$
Analytic cond. $19.8638$
Root an. cond. $4.45688$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61i·2-s − 2.86·4-s + 0.807i·5-s + 5.91·7-s + 2.97i·8-s − 2.11·10-s − 18.9i·11-s + 19.7·13-s + 15.5i·14-s − 19.2·16-s + 4.67i·17-s + 9.92·19-s − 2.31i·20-s + 49.7·22-s − 12.7i·23-s + ⋯
L(s)  = 1  + 1.30i·2-s − 0.715·4-s + 0.161i·5-s + 0.845·7-s + 0.372i·8-s − 0.211·10-s − 1.72i·11-s + 1.51·13-s + 1.10i·14-s − 1.20·16-s + 0.274i·17-s + 0.522·19-s − 0.115i·20-s + 2.25·22-s − 0.555i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-i$
Analytic conductor: \(19.8638\)
Root analytic conductor: \(4.45688\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (728, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.304993662\)
\(L(\frac12)\) \(\approx\) \(2.304993662\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 2.61iT - 4T^{2} \)
5 \( 1 - 0.807iT - 25T^{2} \)
7 \( 1 - 5.91T + 49T^{2} \)
11 \( 1 + 18.9iT - 121T^{2} \)
13 \( 1 - 19.7T + 169T^{2} \)
17 \( 1 - 4.67iT - 289T^{2} \)
19 \( 1 - 9.92T + 361T^{2} \)
23 \( 1 + 12.7iT - 529T^{2} \)
29 \( 1 + 6.03iT - 841T^{2} \)
31 \( 1 - 36.6T + 961T^{2} \)
37 \( 1 + 18.8T + 1.36e3T^{2} \)
41 \( 1 + 22.0iT - 1.68e3T^{2} \)
43 \( 1 - 34.7T + 1.84e3T^{2} \)
47 \( 1 - 28.9iT - 2.20e3T^{2} \)
53 \( 1 - 19.9iT - 2.80e3T^{2} \)
59 \( 1 - 59.8iT - 3.48e3T^{2} \)
61 \( 1 + 14.8T + 3.72e3T^{2} \)
67 \( 1 - 58.3T + 4.48e3T^{2} \)
71 \( 1 - 83.6iT - 5.04e3T^{2} \)
73 \( 1 + 114.T + 5.32e3T^{2} \)
79 \( 1 - 28.5T + 6.24e3T^{2} \)
83 \( 1 + 23.3iT - 6.88e3T^{2} \)
89 \( 1 - 140. iT - 7.92e3T^{2} \)
97 \( 1 - 66.0T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65344926309182953192148783659, −9.000835019333395175733257849944, −8.434374753598654924474373206314, −7.945494758217491560501990453351, −6.77023949474183503979873941005, −6.03910510335037628117979112121, −5.39038794587028176247253965620, −4.19770360326663418963646753487, −2.90139648982296102330485507628, −1.08847248668805792028241061479, 1.14046183344873734430860926867, 1.93994637160376387868650159157, 3.20964662216982804096605568432, 4.30434696317560716059485220279, 5.04564989538372870545215259208, 6.50796156459858813567359773275, 7.44116375498038278913661916465, 8.499929533512307937803268254981, 9.393095794537814696699557909529, 10.14334417796438643472428608746

Graph of the $Z$-function along the critical line