Properties

Label 2-3e6-3.2-c2-0-29
Degree $2$
Conductor $729$
Sign $-i$
Analytic cond. $19.8638$
Root an. cond. $4.45688$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.75i·2-s − 10.1·4-s + 0.534i·5-s + 2.78·7-s − 23.0i·8-s − 2.00·10-s − 7.34i·11-s − 5.88·13-s + 10.4i·14-s + 46.0·16-s − 23.6i·17-s + 7.20·19-s − 5.41i·20-s + 27.6·22-s + 7.36i·23-s + ⋯
L(s)  = 1  + 1.87i·2-s − 2.53·4-s + 0.106i·5-s + 0.397·7-s − 2.88i·8-s − 0.200·10-s − 0.667i·11-s − 0.452·13-s + 0.747i·14-s + 2.88·16-s − 1.39i·17-s + 0.379·19-s − 0.270i·20-s + 1.25·22-s + 0.320i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-i$
Analytic conductor: \(19.8638\)
Root analytic conductor: \(4.45688\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (728, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.449023339\)
\(L(\frac12)\) \(\approx\) \(1.449023339\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 3.75iT - 4T^{2} \)
5 \( 1 - 0.534iT - 25T^{2} \)
7 \( 1 - 2.78T + 49T^{2} \)
11 \( 1 + 7.34iT - 121T^{2} \)
13 \( 1 + 5.88T + 169T^{2} \)
17 \( 1 + 23.6iT - 289T^{2} \)
19 \( 1 - 7.20T + 361T^{2} \)
23 \( 1 - 7.36iT - 529T^{2} \)
29 \( 1 - 18.9iT - 841T^{2} \)
31 \( 1 - 42.0T + 961T^{2} \)
37 \( 1 - 55.2T + 1.36e3T^{2} \)
41 \( 1 + 31.6iT - 1.68e3T^{2} \)
43 \( 1 + 7.38T + 1.84e3T^{2} \)
47 \( 1 + 58.6iT - 2.20e3T^{2} \)
53 \( 1 - 69.8iT - 2.80e3T^{2} \)
59 \( 1 + 31.3iT - 3.48e3T^{2} \)
61 \( 1 + 35.6T + 3.72e3T^{2} \)
67 \( 1 + 80.1T + 4.48e3T^{2} \)
71 \( 1 - 15.4iT - 5.04e3T^{2} \)
73 \( 1 - 95.2T + 5.32e3T^{2} \)
79 \( 1 - 2.07T + 6.24e3T^{2} \)
83 \( 1 - 32.5iT - 6.88e3T^{2} \)
89 \( 1 + 80.0iT - 7.92e3T^{2} \)
97 \( 1 + 15.3T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.997571706157253455232390232107, −9.200017439900968546901993283166, −8.472530872011789199799787585452, −7.61868332856737213294987870759, −6.99477889946647676017828475882, −6.08088685603699967849801166119, −5.15773153546913320617674021553, −4.53493900970610687921960752062, −3.08458467028492266435908716166, −0.67854671722563735783972514180, 1.01951065509452147574780249242, 2.10602164182392347303460872087, 3.10931696026666115657988279940, 4.35068472218339311349071415421, 4.83137212349005982897381441034, 6.22657928866978257594438635156, 7.82143789032008533743487744242, 8.517873453397126642158936370907, 9.546693099404541310631406799678, 10.07600311909426671816738255509

Graph of the $Z$-function along the critical line