Properties

Label 2-3e6-1.1-c5-0-21
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.58·2-s − 10.9·4-s − 95.1·5-s − 70.9·7-s + 197.·8-s + 436.·10-s + 633.·11-s + 262.·13-s + 325.·14-s − 553.·16-s − 1.90e3·17-s + 1.30e3·19-s + 1.04e3·20-s − 2.90e3·22-s + 1.02e3·23-s + 5.93e3·25-s − 1.20e3·26-s + 776.·28-s + 3.27e3·29-s − 5.58e3·31-s − 3.76e3·32-s + 8.73e3·34-s + 6.75e3·35-s − 5.03e3·37-s − 5.98e3·38-s − 1.87e4·40-s − 1.45e3·41-s + ⋯
L(s)  = 1  − 0.811·2-s − 0.342·4-s − 1.70·5-s − 0.547·7-s + 1.08·8-s + 1.38·10-s + 1.57·11-s + 0.431·13-s + 0.443·14-s − 0.540·16-s − 1.59·17-s + 0.829·19-s + 0.582·20-s − 1.27·22-s + 0.402·23-s + 1.89·25-s − 0.350·26-s + 0.187·28-s + 0.724·29-s − 1.04·31-s − 0.649·32-s + 1.29·34-s + 0.931·35-s − 0.605·37-s − 0.672·38-s − 1.85·40-s − 0.134·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4705375959\)
\(L(\frac12)\) \(\approx\) \(0.4705375959\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 4.58T + 32T^{2} \)
5 \( 1 + 95.1T + 3.12e3T^{2} \)
7 \( 1 + 70.9T + 1.68e4T^{2} \)
11 \( 1 - 633.T + 1.61e5T^{2} \)
13 \( 1 - 262.T + 3.71e5T^{2} \)
17 \( 1 + 1.90e3T + 1.41e6T^{2} \)
19 \( 1 - 1.30e3T + 2.47e6T^{2} \)
23 \( 1 - 1.02e3T + 6.43e6T^{2} \)
29 \( 1 - 3.27e3T + 2.05e7T^{2} \)
31 \( 1 + 5.58e3T + 2.86e7T^{2} \)
37 \( 1 + 5.03e3T + 6.93e7T^{2} \)
41 \( 1 + 1.45e3T + 1.15e8T^{2} \)
43 \( 1 + 1.16e4T + 1.47e8T^{2} \)
47 \( 1 - 5.99e3T + 2.29e8T^{2} \)
53 \( 1 + 2.05e4T + 4.18e8T^{2} \)
59 \( 1 - 2.34e4T + 7.14e8T^{2} \)
61 \( 1 + 2.63e4T + 8.44e8T^{2} \)
67 \( 1 + 2.12e4T + 1.35e9T^{2} \)
71 \( 1 + 1.10e4T + 1.80e9T^{2} \)
73 \( 1 + 3.18e4T + 2.07e9T^{2} \)
79 \( 1 + 1.96e4T + 3.07e9T^{2} \)
83 \( 1 - 1.11e5T + 3.93e9T^{2} \)
89 \( 1 - 2.97e4T + 5.58e9T^{2} \)
97 \( 1 + 4.06e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.238631472977387796056136191549, −8.914321990242003001312787662459, −8.074387282943057081198704709147, −7.15100471497686805700599041794, −6.54056113586120667949348144266, −4.82391432054949392323418561670, −4.03951236490250402335471367009, −3.34971660683593002283778916416, −1.44248402073149203203938107418, −0.39410457979645651392607988374, 0.39410457979645651392607988374, 1.44248402073149203203938107418, 3.34971660683593002283778916416, 4.03951236490250402335471367009, 4.82391432054949392323418561670, 6.54056113586120667949348144266, 7.15100471497686805700599041794, 8.074387282943057081198704709147, 8.914321990242003001312787662459, 9.238631472977387796056136191549

Graph of the $Z$-function along the critical line