Properties

Label 2-3e6-1.1-c5-0-31
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·2-s − 28.9·4-s + 91.0·5-s − 76.4·7-s + 106.·8-s − 158.·10-s − 476.·11-s − 1.15e3·13-s + 132.·14-s + 742.·16-s − 1.28e3·17-s + 432.·19-s − 2.63e3·20-s + 828.·22-s − 2.38e3·23-s + 5.17e3·25-s + 2.00e3·26-s + 2.21e3·28-s − 972.·29-s − 3.42e3·31-s − 4.68e3·32-s + 2.23e3·34-s − 6.95e3·35-s + 7.54e3·37-s − 752.·38-s + 9.66e3·40-s + 7.09e3·41-s + ⋯
L(s)  = 1  − 0.307·2-s − 0.905·4-s + 1.62·5-s − 0.589·7-s + 0.585·8-s − 0.501·10-s − 1.18·11-s − 1.89·13-s + 0.181·14-s + 0.725·16-s − 1.07·17-s + 0.274·19-s − 1.47·20-s + 0.364·22-s − 0.939·23-s + 1.65·25-s + 0.581·26-s + 0.533·28-s − 0.214·29-s − 0.640·31-s − 0.808·32-s + 0.331·34-s − 0.960·35-s + 0.906·37-s − 0.0845·38-s + 0.954·40-s + 0.659·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9308031084\)
\(L(\frac12)\) \(\approx\) \(0.9308031084\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 1.73T + 32T^{2} \)
5 \( 1 - 91.0T + 3.12e3T^{2} \)
7 \( 1 + 76.4T + 1.68e4T^{2} \)
11 \( 1 + 476.T + 1.61e5T^{2} \)
13 \( 1 + 1.15e3T + 3.71e5T^{2} \)
17 \( 1 + 1.28e3T + 1.41e6T^{2} \)
19 \( 1 - 432.T + 2.47e6T^{2} \)
23 \( 1 + 2.38e3T + 6.43e6T^{2} \)
29 \( 1 + 972.T + 2.05e7T^{2} \)
31 \( 1 + 3.42e3T + 2.86e7T^{2} \)
37 \( 1 - 7.54e3T + 6.93e7T^{2} \)
41 \( 1 - 7.09e3T + 1.15e8T^{2} \)
43 \( 1 - 1.40e4T + 1.47e8T^{2} \)
47 \( 1 - 9.72e3T + 2.29e8T^{2} \)
53 \( 1 - 6.84e3T + 4.18e8T^{2} \)
59 \( 1 + 7.37e3T + 7.14e8T^{2} \)
61 \( 1 + 193.T + 8.44e8T^{2} \)
67 \( 1 - 2.59e4T + 1.35e9T^{2} \)
71 \( 1 + 4.86e3T + 1.80e9T^{2} \)
73 \( 1 - 4.90e4T + 2.07e9T^{2} \)
79 \( 1 + 5.94e3T + 3.07e9T^{2} \)
83 \( 1 + 1.76e4T + 3.93e9T^{2} \)
89 \( 1 + 6.49e4T + 5.58e9T^{2} \)
97 \( 1 + 1.74e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.655374220394290331123639728312, −9.142292030091939194133977021411, −7.968832703908913766332161767537, −7.08501421943143238322636674066, −5.88842350673084316800601884942, −5.25029096369924904051411604420, −4.37208904379669477560222013254, −2.71711177374456866571012993800, −2.03798900248305287499773427328, −0.44946478412022155893551519986, 0.44946478412022155893551519986, 2.03798900248305287499773427328, 2.71711177374456866571012993800, 4.37208904379669477560222013254, 5.25029096369924904051411604420, 5.88842350673084316800601884942, 7.08501421943143238322636674066, 7.968832703908913766332161767537, 9.142292030091939194133977021411, 9.655374220394290331123639728312

Graph of the $Z$-function along the critical line