Properties

Label 2-3e6-1.1-c5-0-5
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.44·2-s − 29.9·4-s − 31.6·5-s − 172.·7-s + 89.2·8-s + 45.6·10-s + 1.42·11-s + 286.·13-s + 248.·14-s + 828.·16-s − 190.·17-s − 93.7·19-s + 946.·20-s − 2.04·22-s − 3.59e3·23-s − 2.12e3·25-s − 413.·26-s + 5.15e3·28-s − 6.72e3·29-s − 2.79e3·31-s − 4.05e3·32-s + 275.·34-s + 5.45e3·35-s − 5.98e3·37-s + 135.·38-s − 2.82e3·40-s − 1.75e4·41-s + ⋯
L(s)  = 1  − 0.254·2-s − 0.935·4-s − 0.566·5-s − 1.32·7-s + 0.493·8-s + 0.144·10-s + 0.00354·11-s + 0.470·13-s + 0.338·14-s + 0.809·16-s − 0.160·17-s − 0.0595·19-s + 0.529·20-s − 0.000902·22-s − 1.41·23-s − 0.679·25-s − 0.119·26-s + 1.24·28-s − 1.48·29-s − 0.522·31-s − 0.699·32-s + 0.0408·34-s + 0.752·35-s − 0.718·37-s + 0.0151·38-s − 0.279·40-s − 1.62·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.05432890454\)
\(L(\frac12)\) \(\approx\) \(0.05432890454\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 1.44T + 32T^{2} \)
5 \( 1 + 31.6T + 3.12e3T^{2} \)
7 \( 1 + 172.T + 1.68e4T^{2} \)
11 \( 1 - 1.42T + 1.61e5T^{2} \)
13 \( 1 - 286.T + 3.71e5T^{2} \)
17 \( 1 + 190.T + 1.41e6T^{2} \)
19 \( 1 + 93.7T + 2.47e6T^{2} \)
23 \( 1 + 3.59e3T + 6.43e6T^{2} \)
29 \( 1 + 6.72e3T + 2.05e7T^{2} \)
31 \( 1 + 2.79e3T + 2.86e7T^{2} \)
37 \( 1 + 5.98e3T + 6.93e7T^{2} \)
41 \( 1 + 1.75e4T + 1.15e8T^{2} \)
43 \( 1 + 1.91e4T + 1.47e8T^{2} \)
47 \( 1 + 2.11e4T + 2.29e8T^{2} \)
53 \( 1 + 1.66e4T + 4.18e8T^{2} \)
59 \( 1 - 5.34e4T + 7.14e8T^{2} \)
61 \( 1 - 3.84e4T + 8.44e8T^{2} \)
67 \( 1 + 6.80e4T + 1.35e9T^{2} \)
71 \( 1 - 7.39e4T + 1.80e9T^{2} \)
73 \( 1 + 1.32e4T + 2.07e9T^{2} \)
79 \( 1 + 2.28e4T + 3.07e9T^{2} \)
83 \( 1 + 7.08e4T + 3.93e9T^{2} \)
89 \( 1 - 4.01e4T + 5.58e9T^{2} \)
97 \( 1 - 1.43e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.801841080230044898458267667778, −8.741520637579590066531019133857, −8.110083109353152087768615482388, −7.08172769778061783681892487975, −6.11501702975761006559862911898, −5.13204987788764513463651246604, −3.81506510188613022084812134526, −3.50491670163381619229327363305, −1.75193812807670926207857549299, −0.11103868692428728095878591743, 0.11103868692428728095878591743, 1.75193812807670926207857549299, 3.50491670163381619229327363305, 3.81506510188613022084812134526, 5.13204987788764513463651246604, 6.11501702975761006559862911898, 7.08172769778061783681892487975, 8.110083109353152087768615482388, 8.741520637579590066531019133857, 9.801841080230044898458267667778

Graph of the $Z$-function along the critical line