Properties

Label 2-3e6-1.1-c5-0-6
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.28·2-s + 7.49·4-s − 48.8·5-s − 157.·7-s − 153.·8-s − 307.·10-s − 739.·11-s − 630.·13-s − 989.·14-s − 1.20e3·16-s − 369.·17-s − 522.·19-s − 366.·20-s − 4.64e3·22-s − 1.71e3·23-s − 737.·25-s − 3.95e3·26-s − 1.18e3·28-s + 7.00e3·29-s + 7.48e3·31-s − 2.66e3·32-s − 2.32e3·34-s + 7.69e3·35-s − 4.82e3·37-s − 3.28e3·38-s + 7.52e3·40-s − 2.80e3·41-s + ⋯
L(s)  = 1  + 1.11·2-s + 0.234·4-s − 0.874·5-s − 1.21·7-s − 0.850·8-s − 0.971·10-s − 1.84·11-s − 1.03·13-s − 1.34·14-s − 1.17·16-s − 0.309·17-s − 0.332·19-s − 0.204·20-s − 2.04·22-s − 0.676·23-s − 0.236·25-s − 1.14·26-s − 0.284·28-s + 1.54·29-s + 1.39·31-s − 0.459·32-s − 0.344·34-s + 1.06·35-s − 0.579·37-s − 0.368·38-s + 0.743·40-s − 0.260·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.09707959552\)
\(L(\frac12)\) \(\approx\) \(0.09707959552\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 6.28T + 32T^{2} \)
5 \( 1 + 48.8T + 3.12e3T^{2} \)
7 \( 1 + 157.T + 1.68e4T^{2} \)
11 \( 1 + 739.T + 1.61e5T^{2} \)
13 \( 1 + 630.T + 3.71e5T^{2} \)
17 \( 1 + 369.T + 1.41e6T^{2} \)
19 \( 1 + 522.T + 2.47e6T^{2} \)
23 \( 1 + 1.71e3T + 6.43e6T^{2} \)
29 \( 1 - 7.00e3T + 2.05e7T^{2} \)
31 \( 1 - 7.48e3T + 2.86e7T^{2} \)
37 \( 1 + 4.82e3T + 6.93e7T^{2} \)
41 \( 1 + 2.80e3T + 1.15e8T^{2} \)
43 \( 1 + 2.46e3T + 1.47e8T^{2} \)
47 \( 1 + 8.89e3T + 2.29e8T^{2} \)
53 \( 1 - 1.27e4T + 4.18e8T^{2} \)
59 \( 1 + 5.38e3T + 7.14e8T^{2} \)
61 \( 1 + 4.97e4T + 8.44e8T^{2} \)
67 \( 1 - 3.30e4T + 1.35e9T^{2} \)
71 \( 1 + 4.62e4T + 1.80e9T^{2} \)
73 \( 1 + 3.70e4T + 2.07e9T^{2} \)
79 \( 1 + 9.99e4T + 3.07e9T^{2} \)
83 \( 1 + 5.58e4T + 3.93e9T^{2} \)
89 \( 1 + 4.29e4T + 5.58e9T^{2} \)
97 \( 1 - 8.61e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.895296417238407945275558048118, −8.634477573607057982716126835800, −7.82547017744070040002463657568, −6.82229134638595278914753120543, −5.94052338448941682875027121661, −4.93042288065949650622308963300, −4.26482167068055831960524200782, −3.09172875256769165122293202974, −2.60513907231398955438326168252, −0.11176842035578823709182533550, 0.11176842035578823709182533550, 2.60513907231398955438326168252, 3.09172875256769165122293202974, 4.26482167068055831960524200782, 4.93042288065949650622308963300, 5.94052338448941682875027121661, 6.82229134638595278914753120543, 7.82547017744070040002463657568, 8.634477573607057982716126835800, 9.895296417238407945275558048118

Graph of the $Z$-function along the critical line