Properties

Label 2-3e6-1.1-c5-0-3
Degree $2$
Conductor $729$
Sign $1$
Analytic cond. $116.919$
Root an. cond. $10.8129$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.44·2-s + 39.2·4-s + 25.1·5-s − 71.3·7-s − 61.2·8-s − 211.·10-s − 509.·11-s − 341.·13-s + 602.·14-s − 738.·16-s − 1.62e3·17-s − 1.23e3·19-s + 985.·20-s + 4.29e3·22-s − 3.18e3·23-s − 2.49e3·25-s + 2.88e3·26-s − 2.80e3·28-s − 5.53e3·29-s − 2.85e3·31-s + 8.19e3·32-s + 1.37e4·34-s − 1.79e3·35-s − 1.07e4·37-s + 1.04e4·38-s − 1.53e3·40-s + 1.89e4·41-s + ⋯
L(s)  = 1  − 1.49·2-s + 1.22·4-s + 0.449·5-s − 0.550·7-s − 0.338·8-s − 0.670·10-s − 1.26·11-s − 0.560·13-s + 0.821·14-s − 0.721·16-s − 1.36·17-s − 0.783·19-s + 0.551·20-s + 1.89·22-s − 1.25·23-s − 0.798·25-s + 0.836·26-s − 0.675·28-s − 1.22·29-s − 0.534·31-s + 1.41·32-s + 2.03·34-s − 0.247·35-s − 1.28·37-s + 1.16·38-s − 0.152·40-s + 1.75·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(116.919\)
Root analytic conductor: \(10.8129\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.03137986154\)
\(L(\frac12)\) \(\approx\) \(0.03137986154\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 8.44T + 32T^{2} \)
5 \( 1 - 25.1T + 3.12e3T^{2} \)
7 \( 1 + 71.3T + 1.68e4T^{2} \)
11 \( 1 + 509.T + 1.61e5T^{2} \)
13 \( 1 + 341.T + 3.71e5T^{2} \)
17 \( 1 + 1.62e3T + 1.41e6T^{2} \)
19 \( 1 + 1.23e3T + 2.47e6T^{2} \)
23 \( 1 + 3.18e3T + 6.43e6T^{2} \)
29 \( 1 + 5.53e3T + 2.05e7T^{2} \)
31 \( 1 + 2.85e3T + 2.86e7T^{2} \)
37 \( 1 + 1.07e4T + 6.93e7T^{2} \)
41 \( 1 - 1.89e4T + 1.15e8T^{2} \)
43 \( 1 + 1.39e4T + 1.47e8T^{2} \)
47 \( 1 + 353.T + 2.29e8T^{2} \)
53 \( 1 - 2.02e4T + 4.18e8T^{2} \)
59 \( 1 - 2.76e4T + 7.14e8T^{2} \)
61 \( 1 - 6.57e3T + 8.44e8T^{2} \)
67 \( 1 - 3.43e4T + 1.35e9T^{2} \)
71 \( 1 + 2.47e4T + 1.80e9T^{2} \)
73 \( 1 + 7.95e4T + 2.07e9T^{2} \)
79 \( 1 - 2.57e4T + 3.07e9T^{2} \)
83 \( 1 - 5.61e3T + 3.93e9T^{2} \)
89 \( 1 - 3.19e4T + 5.58e9T^{2} \)
97 \( 1 - 6.05e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.629434288744881756444631503696, −8.877841443718384580121751590036, −8.048899826733830438375637560733, −7.28335822776090441544199952957, −6.39807560061486073800206366572, −5.35710653318101575603028258495, −4.06896513612853129681398157650, −2.43827530037269697670704209668, −1.89355254774637462817716787471, −0.096393495900243005539552389063, 0.096393495900243005539552389063, 1.89355254774637462817716787471, 2.43827530037269697670704209668, 4.06896513612853129681398157650, 5.35710653318101575603028258495, 6.39807560061486073800206366572, 7.28335822776090441544199952957, 8.048899826733830438375637560733, 8.877841443718384580121751590036, 9.629434288744881756444631503696

Graph of the $Z$-function along the critical line