L(s) = 1 | + 1.51·2-s + (1.66 + 0.476i)3-s + 0.294·4-s + (0.775 + 2.09i)5-s + (2.52 + 0.722i)6-s − 2.58·8-s + (2.54 + 1.58i)9-s + (1.17 + 3.17i)10-s + 2.14i·11-s + (0.490 + 0.140i)12-s + 3.48·13-s + (0.291 + 3.86i)15-s − 4.50·16-s − 3.57i·17-s + (3.85 + 2.40i)18-s − 1.22i·19-s + ⋯ |
L(s) = 1 | + 1.07·2-s + (0.961 + 0.275i)3-s + 0.147·4-s + (0.346 + 0.937i)5-s + (1.02 + 0.294i)6-s − 0.913·8-s + (0.848 + 0.529i)9-s + (0.371 + 1.00i)10-s + 0.647i·11-s + (0.141 + 0.0405i)12-s + 0.965·13-s + (0.0753 + 0.997i)15-s − 1.12·16-s − 0.867i·17-s + (0.908 + 0.566i)18-s − 0.280i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.595 - 0.803i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.595 - 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.02696 + 1.52332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.02696 + 1.52332i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.66 - 0.476i)T \) |
| 5 | \( 1 + (-0.775 - 2.09i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 1.51T + 2T^{2} \) |
| 11 | \( 1 - 2.14iT - 11T^{2} \) |
| 13 | \( 1 - 3.48T + 13T^{2} \) |
| 17 | \( 1 + 3.57iT - 17T^{2} \) |
| 19 | \( 1 + 1.22iT - 19T^{2} \) |
| 23 | \( 1 + 1.51T + 23T^{2} \) |
| 29 | \( 1 - 5.95iT - 29T^{2} \) |
| 31 | \( 1 + 3.17iT - 31T^{2} \) |
| 37 | \( 1 + 7.80iT - 37T^{2} \) |
| 41 | \( 1 - 11.8T + 41T^{2} \) |
| 43 | \( 1 + 2.99iT - 43T^{2} \) |
| 47 | \( 1 + 6.10iT - 47T^{2} \) |
| 53 | \( 1 + 11.2T + 53T^{2} \) |
| 59 | \( 1 + 2.16T + 59T^{2} \) |
| 61 | \( 1 + 3.39iT - 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + 6.85T + 73T^{2} \) |
| 79 | \( 1 + 1.88T + 79T^{2} \) |
| 83 | \( 1 - 9.10iT - 83T^{2} \) |
| 89 | \( 1 - 1.77T + 89T^{2} \) |
| 97 | \( 1 + 1.32T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56830076986724203055685166186, −9.478356577943698911181013424349, −9.060697843929036193422613031428, −7.78244596953610152757546408204, −6.92800324635781514432313628886, −5.96640137299306658561554187175, −4.89107604345449158118209365184, −3.90803469908657546019984008880, −3.14018414664848137715194417011, −2.16055206423454296475334961766,
1.32155291232393642906434234960, 2.80519909873098531334764341643, 3.87077925331904577820882368095, 4.52277238443567517911257544505, 5.85072146271342030557854120930, 6.30486043455996520926094998421, 7.915663853804306042497967747350, 8.535588907951870065420889064674, 9.198027733291667951224452793047, 10.07917897362107320821911949633