L(s) = 1 | − 0.903·2-s + (1.72 + 0.188i)3-s − 1.18·4-s + (1.94 + 1.10i)5-s + (−1.55 − 0.169i)6-s + 2.87·8-s + (2.92 + 0.647i)9-s + (−1.75 − 0.994i)10-s + 4.06i·11-s + (−2.03 − 0.222i)12-s − 2.88·13-s + (3.14 + 2.26i)15-s − 0.230·16-s + 6.66i·17-s + (−2.64 − 0.585i)18-s − 5.70i·19-s + ⋯ |
L(s) = 1 | − 0.638·2-s + (0.994 + 0.108i)3-s − 0.591·4-s + (0.870 + 0.492i)5-s + (−0.634 − 0.0693i)6-s + 1.01·8-s + (0.976 + 0.215i)9-s + (−0.556 − 0.314i)10-s + 1.22i·11-s + (−0.588 − 0.0643i)12-s − 0.799·13-s + (0.811 + 0.583i)15-s − 0.0575·16-s + 1.61i·17-s + (−0.623 − 0.137i)18-s − 1.30i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.449 - 0.893i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.449 - 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.27000 + 0.782575i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.27000 + 0.782575i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.72 - 0.188i)T \) |
| 5 | \( 1 + (-1.94 - 1.10i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.903T + 2T^{2} \) |
| 11 | \( 1 - 4.06iT - 11T^{2} \) |
| 13 | \( 1 + 2.88T + 13T^{2} \) |
| 17 | \( 1 - 6.66iT - 17T^{2} \) |
| 19 | \( 1 + 5.70iT - 19T^{2} \) |
| 23 | \( 1 + 1.63T + 23T^{2} \) |
| 29 | \( 1 + 5.89iT - 29T^{2} \) |
| 31 | \( 1 - 1.87iT - 31T^{2} \) |
| 37 | \( 1 + 1.59iT - 37T^{2} \) |
| 41 | \( 1 - 9.12T + 41T^{2} \) |
| 43 | \( 1 - 7.53iT - 43T^{2} \) |
| 47 | \( 1 - 6.91iT - 47T^{2} \) |
| 53 | \( 1 + 1.51T + 53T^{2} \) |
| 59 | \( 1 + 0.991T + 59T^{2} \) |
| 61 | \( 1 - 6.16iT - 61T^{2} \) |
| 67 | \( 1 + 10.0iT - 67T^{2} \) |
| 71 | \( 1 + 4.81iT - 71T^{2} \) |
| 73 | \( 1 - 0.560T + 73T^{2} \) |
| 79 | \( 1 - 3.79T + 79T^{2} \) |
| 83 | \( 1 + 4.00iT - 83T^{2} \) |
| 89 | \( 1 - 10.4T + 89T^{2} \) |
| 97 | \( 1 - 14.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21056226175800157194978773148, −9.505895321289408600766552483351, −9.138886310559677962494034681722, −7.976765611972357118400167701976, −7.39833037315144140258338394528, −6.33253543897024455206644939269, −4.87665790539849088003551464514, −4.12489190865271435857721705659, −2.62153572413936173375981463639, −1.68217361367402337706647876223,
0.930348796662309048357522349998, 2.27903576340465500710286053988, 3.56133617003381467509212038593, 4.77975493778636032351699937610, 5.67159450097583142007739679773, 7.05244266595114405552648558846, 7.949618462812234591117657477392, 8.669137773667911394735603788059, 9.315991521242473177319035239394, 9.870053364199318944485186493569