L(s) = 1 | + 0.346·2-s + (1.43 − 0.971i)3-s − 1.87·4-s + (1.85 + 1.24i)5-s + (0.496 − 0.336i)6-s − 1.34·8-s + (1.11 − 2.78i)9-s + (0.644 + 0.430i)10-s + 0.537i·11-s + (−2.69 + 1.82i)12-s + 3.81·13-s + (3.87 − 0.0267i)15-s + 3.29·16-s − 3.87i·17-s + (0.384 − 0.965i)18-s + 3.11i·19-s + ⋯ |
L(s) = 1 | + 0.244·2-s + (0.827 − 0.561i)3-s − 0.939·4-s + (0.831 + 0.555i)5-s + (0.202 − 0.137i)6-s − 0.475·8-s + (0.370 − 0.928i)9-s + (0.203 + 0.136i)10-s + 0.162i·11-s + (−0.778 + 0.527i)12-s + 1.05·13-s + (0.999 − 0.00691i)15-s + 0.823·16-s − 0.940i·17-s + (0.0906 − 0.227i)18-s + 0.715i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.915 + 0.402i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.915 + 0.402i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.15848 - 0.453931i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.15848 - 0.453931i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.43 + 0.971i)T \) |
| 5 | \( 1 + (-1.85 - 1.24i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 0.346T + 2T^{2} \) |
| 11 | \( 1 - 0.537iT - 11T^{2} \) |
| 13 | \( 1 - 3.81T + 13T^{2} \) |
| 17 | \( 1 + 3.87iT - 17T^{2} \) |
| 19 | \( 1 - 3.11iT - 19T^{2} \) |
| 23 | \( 1 - 7.75T + 23T^{2} \) |
| 29 | \( 1 + 8.41iT - 29T^{2} \) |
| 31 | \( 1 + 3.02iT - 31T^{2} \) |
| 37 | \( 1 - 10.4iT - 37T^{2} \) |
| 41 | \( 1 + 8.56T + 41T^{2} \) |
| 43 | \( 1 - 4.12iT - 43T^{2} \) |
| 47 | \( 1 - 0.416iT - 47T^{2} \) |
| 53 | \( 1 - 4.28T + 53T^{2} \) |
| 59 | \( 1 + 10.2T + 59T^{2} \) |
| 61 | \( 1 + 0.282iT - 61T^{2} \) |
| 67 | \( 1 + 9.68iT - 67T^{2} \) |
| 71 | \( 1 + 1.01iT - 71T^{2} \) |
| 73 | \( 1 - 6.67T + 73T^{2} \) |
| 79 | \( 1 + 3.87T + 79T^{2} \) |
| 83 | \( 1 - 10.8iT - 83T^{2} \) |
| 89 | \( 1 + 6.16T + 89T^{2} \) |
| 97 | \( 1 + 8.00T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.954197249477945719881573990617, −9.491684316276706898212704694879, −8.651261271471618128901533581735, −7.86452867681531917911833284469, −6.74111363848889167809730391903, −5.99169164804306888335842249187, −4.84693534251649568351307667334, −3.60071710937146075858768529833, −2.76324208118560165435815232834, −1.27318314218492058386898951690,
1.42973373843420870055243229415, 3.04484166951071613938863616240, 3.97310903010905302691252996472, 4.98242682053033773088919020593, 5.61528719620686865316574106803, 6.93479294664009114635573110436, 8.364351421086827346793742268947, 8.867785583805610037282969782778, 9.254602645017252440909788933257, 10.37350934001335930632802340993