L(s) = 1 | + 2.04·2-s + (−0.965 + 1.43i)3-s + 2.18·4-s + (−2.23 + 0.144i)5-s + (−1.97 + 2.94i)6-s + 0.376·8-s + (−1.13 − 2.77i)9-s + (−4.56 + 0.294i)10-s + 5.15i·11-s + (−2.10 + 3.14i)12-s − 2.98·13-s + (1.94 − 3.34i)15-s − 3.59·16-s + 1.35i·17-s + (−2.32 − 5.67i)18-s + 3.09i·19-s + ⋯ |
L(s) = 1 | + 1.44·2-s + (−0.557 + 0.830i)3-s + 1.09·4-s + (−0.997 + 0.0644i)5-s + (−0.806 + 1.20i)6-s + 0.133·8-s + (−0.378 − 0.925i)9-s + (−1.44 + 0.0931i)10-s + 1.55i·11-s + (−0.608 + 0.906i)12-s − 0.826·13-s + (0.502 − 0.864i)15-s − 0.899·16-s + 0.329i·17-s + (−0.547 − 1.33i)18-s + 0.709i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.932 - 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.218239 + 1.16775i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.218239 + 1.16775i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.965 - 1.43i)T \) |
| 5 | \( 1 + (2.23 - 0.144i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.04T + 2T^{2} \) |
| 11 | \( 1 - 5.15iT - 11T^{2} \) |
| 13 | \( 1 + 2.98T + 13T^{2} \) |
| 17 | \( 1 - 1.35iT - 17T^{2} \) |
| 19 | \( 1 - 3.09iT - 19T^{2} \) |
| 23 | \( 1 + 7.22T + 23T^{2} \) |
| 29 | \( 1 - 2.69iT - 29T^{2} \) |
| 31 | \( 1 + 4.35iT - 31T^{2} \) |
| 37 | \( 1 + 7.59iT - 37T^{2} \) |
| 41 | \( 1 - 7.68T + 41T^{2} \) |
| 43 | \( 1 - 7.79iT - 43T^{2} \) |
| 47 | \( 1 - 6.07iT - 47T^{2} \) |
| 53 | \( 1 - 6.29T + 53T^{2} \) |
| 59 | \( 1 - 4.25T + 59T^{2} \) |
| 61 | \( 1 + 5.21iT - 61T^{2} \) |
| 67 | \( 1 - 5.65iT - 67T^{2} \) |
| 71 | \( 1 - 11.2iT - 71T^{2} \) |
| 73 | \( 1 + 4.91T + 73T^{2} \) |
| 79 | \( 1 - 11.9T + 79T^{2} \) |
| 83 | \( 1 - 12.1iT - 83T^{2} \) |
| 89 | \( 1 - 9.32T + 89T^{2} \) |
| 97 | \( 1 + 19.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03585699026048168274601740514, −10.05640423981819176372462655456, −9.318069426111412856597449956954, −7.923304624342584577065927857286, −7.02309751085150498187544274717, −6.01854433484917196507362020438, −5.10693927932161645706507340204, −4.20926688814946893697454446723, −3.93382510392389144054828668998, −2.49971431048339394609921738520,
0.38500251701450582364588808162, 2.50995963672074076059337696811, 3.52409678387261966683312433786, 4.61254020082505631431237390623, 5.44138138762383251130307496389, 6.27645556575646258174238603500, 7.11127258379351833464148964884, 8.017914062218908889111728640358, 8.878590637466473979369732016908, 10.49406404315427959387973212450