L(s) = 1 | − 0.903·2-s + (−1.72 − 0.188i)3-s − 1.18·4-s + (−1.94 − 1.10i)5-s + (1.55 + 0.169i)6-s + 2.87·8-s + (2.92 + 0.647i)9-s + (1.75 + 0.994i)10-s + 4.06i·11-s + (2.03 + 0.222i)12-s + 2.88·13-s + (3.14 + 2.26i)15-s − 0.230·16-s − 6.66i·17-s + (−2.64 − 0.585i)18-s + 5.70i·19-s + ⋯ |
L(s) = 1 | − 0.638·2-s + (−0.994 − 0.108i)3-s − 0.591·4-s + (−0.870 − 0.492i)5-s + (0.634 + 0.0693i)6-s + 1.01·8-s + (0.976 + 0.215i)9-s + (0.556 + 0.314i)10-s + 1.22i·11-s + (0.588 + 0.0643i)12-s + 0.799·13-s + (0.811 + 0.583i)15-s − 0.0575·16-s − 1.61i·17-s + (−0.623 − 0.137i)18-s + 1.30i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.703 + 0.710i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.703 + 0.710i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0871693 - 0.209059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0871693 - 0.209059i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.72 + 0.188i)T \) |
| 5 | \( 1 + (1.94 + 1.10i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.903T + 2T^{2} \) |
| 11 | \( 1 - 4.06iT - 11T^{2} \) |
| 13 | \( 1 - 2.88T + 13T^{2} \) |
| 17 | \( 1 + 6.66iT - 17T^{2} \) |
| 19 | \( 1 - 5.70iT - 19T^{2} \) |
| 23 | \( 1 + 1.63T + 23T^{2} \) |
| 29 | \( 1 + 5.89iT - 29T^{2} \) |
| 31 | \( 1 + 1.87iT - 31T^{2} \) |
| 37 | \( 1 + 1.59iT - 37T^{2} \) |
| 41 | \( 1 + 9.12T + 41T^{2} \) |
| 43 | \( 1 - 7.53iT - 43T^{2} \) |
| 47 | \( 1 + 6.91iT - 47T^{2} \) |
| 53 | \( 1 + 1.51T + 53T^{2} \) |
| 59 | \( 1 - 0.991T + 59T^{2} \) |
| 61 | \( 1 + 6.16iT - 61T^{2} \) |
| 67 | \( 1 + 10.0iT - 67T^{2} \) |
| 71 | \( 1 + 4.81iT - 71T^{2} \) |
| 73 | \( 1 + 0.560T + 73T^{2} \) |
| 79 | \( 1 - 3.79T + 79T^{2} \) |
| 83 | \( 1 - 4.00iT - 83T^{2} \) |
| 89 | \( 1 + 10.4T + 89T^{2} \) |
| 97 | \( 1 + 14.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.899483188203367278122550195231, −9.432220712641949133914559219047, −8.184673248670752877071009317139, −7.64896710068783092540902441754, −6.72539717752577331751062765530, −5.39001168344014584765670772212, −4.62574632478755968251863360318, −3.85792229336810973173497337591, −1.55529681025302767798536476457, −0.21377367688774253364373770088,
1.15302477084272243409401203233, 3.46745815050095795262486177545, 4.24700126508016915508314978222, 5.36984547663214240741050489946, 6.38244270346205557124929327797, 7.23576409709760425294093184951, 8.390839324761208523758033834206, 8.746458239235901687096857259035, 10.07823539486202793888034783982, 10.84167672084801699074079377706