L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 − 0.866i)3-s + (0.500 − 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·6-s − 3·8-s + (−0.499 − 0.866i)9-s + (0.499 − 0.866i)10-s + (−0.499 − 0.866i)12-s + 6·13-s + 0.999·15-s + (0.500 + 0.866i)16-s + (1 − 1.73i)17-s + (−0.499 + 0.866i)18-s + (−4 − 6.92i)19-s + 20-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 − 0.499i)3-s + (0.250 − 0.433i)4-s + (0.223 + 0.387i)5-s − 0.408·6-s − 1.06·8-s + (−0.166 − 0.288i)9-s + (0.158 − 0.273i)10-s + (−0.144 − 0.249i)12-s + 1.66·13-s + 0.258·15-s + (0.125 + 0.216i)16-s + (0.242 − 0.420i)17-s + (−0.117 + 0.204i)18-s + (−0.917 − 1.58i)19-s + 0.223·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.555565 - 1.32566i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.555565 - 1.32566i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6T + 13T^{2} \) |
| 17 | \( 1 + (-1 + 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4 + 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4 + 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5 - 8.66i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1 + 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21513019721889744588714716247, −9.142671875229193952026188171827, −8.652693295096881803388888080875, −7.46699723572523875021634620936, −6.30232677462348876300017408378, −6.06215823738007843248542834061, −4.38811972194348669394918723538, −2.99376094750741457280557848510, −2.17265511341079055014304820807, −0.816880209091725251028262654467,
1.79144008333543833352681486237, 3.43584376871147869793226047999, 4.05053938266912190787151039746, 5.75599649755096734032464695844, 6.10687461110529749998803352213, 7.45495127667200245001312433880, 8.287735619010345288068790827385, 8.714492154223897861050509021309, 9.673084331152652731725376117625, 10.56324952502121165516736973958