Properties

Label 2-735-49.15-c1-0-30
Degree 22
Conductor 735735
Sign 0.253+0.967i-0.253 + 0.967i
Analytic cond. 5.869005.86900
Root an. cond. 2.422602.42260
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.189 − 0.831i)2-s + (0.623 − 0.781i)3-s + (1.14 + 0.552i)4-s + (0.623 − 0.781i)5-s + (−0.531 − 0.666i)6-s + (−2.46 − 0.952i)7-s + (1.73 − 2.18i)8-s + (−0.222 − 0.974i)9-s + (−0.531 − 0.666i)10-s + (−0.625 + 2.74i)11-s + (1.14 − 0.552i)12-s + (1.23 − 5.42i)13-s + (−1.26 + 1.87i)14-s + (−0.222 − 0.974i)15-s + (0.104 + 0.131i)16-s + (3.87 − 1.86i)17-s + ⋯
L(s)  = 1  + (0.134 − 0.587i)2-s + (0.359 − 0.451i)3-s + (0.573 + 0.276i)4-s + (0.278 − 0.349i)5-s + (−0.216 − 0.272i)6-s + (−0.932 − 0.360i)7-s + (0.615 − 0.771i)8-s + (−0.0741 − 0.324i)9-s + (−0.168 − 0.210i)10-s + (−0.188 + 0.826i)11-s + (0.331 − 0.159i)12-s + (0.343 − 1.50i)13-s + (−0.336 + 0.499i)14-s + (−0.0574 − 0.251i)15-s + (0.0262 + 0.0329i)16-s + (0.939 − 0.452i)17-s + ⋯

Functional equation

Λ(s)=(735s/2ΓC(s)L(s)=((0.253+0.967i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(735s/2ΓC(s+1/2)L(s)=((0.253+0.967i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 735735    =    35723 \cdot 5 \cdot 7^{2}
Sign: 0.253+0.967i-0.253 + 0.967i
Analytic conductor: 5.869005.86900
Root analytic conductor: 2.422602.42260
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ735(211,)\chi_{735} (211, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 735, ( :1/2), 0.253+0.967i)(2,\ 735,\ (\ :1/2),\ -0.253 + 0.967i)

Particular Values

L(1)L(1) \approx 1.271901.64776i1.27190 - 1.64776i
L(12)L(\frac12) \approx 1.271901.64776i1.27190 - 1.64776i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
5 1+(0.623+0.781i)T 1 + (-0.623 + 0.781i)T
7 1+(2.46+0.952i)T 1 + (2.46 + 0.952i)T
good2 1+(0.189+0.831i)T+(1.800.867i)T2 1 + (-0.189 + 0.831i)T + (-1.80 - 0.867i)T^{2}
11 1+(0.6252.74i)T+(9.914.77i)T2 1 + (0.625 - 2.74i)T + (-9.91 - 4.77i)T^{2}
13 1+(1.23+5.42i)T+(11.75.64i)T2 1 + (-1.23 + 5.42i)T + (-11.7 - 5.64i)T^{2}
17 1+(3.87+1.86i)T+(10.513.2i)T2 1 + (-3.87 + 1.86i)T + (10.5 - 13.2i)T^{2}
19 1+1.56T+19T2 1 + 1.56T + 19T^{2}
23 1+(5.71+2.75i)T+(14.3+17.9i)T2 1 + (5.71 + 2.75i)T + (14.3 + 17.9i)T^{2}
29 1+(2.351.13i)T+(18.022.6i)T2 1 + (2.35 - 1.13i)T + (18.0 - 22.6i)T^{2}
31 18.87T+31T2 1 - 8.87T + 31T^{2}
37 1+(4.72+2.27i)T+(23.028.9i)T2 1 + (-4.72 + 2.27i)T + (23.0 - 28.9i)T^{2}
41 1+(1.732.17i)T+(9.1239.9i)T2 1 + (1.73 - 2.17i)T + (-9.12 - 39.9i)T^{2}
43 1+(2.683.36i)T+(9.56+41.9i)T2 1 + (-2.68 - 3.36i)T + (-9.56 + 41.9i)T^{2}
47 1+(2.5811.3i)T+(42.320.3i)T2 1 + (2.58 - 11.3i)T + (-42.3 - 20.3i)T^{2}
53 1+(0.879+0.423i)T+(33.0+41.4i)T2 1 + (0.879 + 0.423i)T + (33.0 + 41.4i)T^{2}
59 1+(3.43+4.31i)T+(13.1+57.5i)T2 1 + (3.43 + 4.31i)T + (-13.1 + 57.5i)T^{2}
61 1+(10.8+5.24i)T+(38.047.6i)T2 1 + (-10.8 + 5.24i)T + (38.0 - 47.6i)T^{2}
67 1+8.36T+67T2 1 + 8.36T + 67T^{2}
71 1+(4.72+2.27i)T+(44.2+55.5i)T2 1 + (4.72 + 2.27i)T + (44.2 + 55.5i)T^{2}
73 1+(2.7712.1i)T+(65.7+31.6i)T2 1 + (-2.77 - 12.1i)T + (-65.7 + 31.6i)T^{2}
79 1+5.88T+79T2 1 + 5.88T + 79T^{2}
83 1+(1.757.68i)T+(74.7+36.0i)T2 1 + (-1.75 - 7.68i)T + (-74.7 + 36.0i)T^{2}
89 1+(0.7783.41i)T+(80.1+38.6i)T2 1 + (-0.778 - 3.41i)T + (-80.1 + 38.6i)T^{2}
97 1+6.73T+97T2 1 + 6.73T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.02350533997243749660197059186, −9.693735448004402854660477475604, −8.162225216175250773152090144661, −7.66796769043208589847850381642, −6.63135071073122320509805375356, −5.84472492984896821317880261178, −4.35478732329581819172033272306, −3.22884404606525913981400223254, −2.47774080176655663271990301530, −1.01611333791507798116387747777, 1.94013692635664205687647030201, 3.08000928147509741993829871313, 4.17263051863819818109577888555, 5.64464759050625587358327558849, 6.14572863255748686633224979245, 6.95124254242505271649228010488, 8.037773172549761441239133036335, 8.870405830364642140702078734342, 9.903055260266149774441928372006, 10.37790443977387496623566460001

Graph of the ZZ-function along the critical line