L(s) = 1 | + (0.189 − 0.831i)2-s + (0.623 − 0.781i)3-s + (1.14 + 0.552i)4-s + (0.623 − 0.781i)5-s + (−0.531 − 0.666i)6-s + (−2.46 − 0.952i)7-s + (1.73 − 2.18i)8-s + (−0.222 − 0.974i)9-s + (−0.531 − 0.666i)10-s + (−0.625 + 2.74i)11-s + (1.14 − 0.552i)12-s + (1.23 − 5.42i)13-s + (−1.26 + 1.87i)14-s + (−0.222 − 0.974i)15-s + (0.104 + 0.131i)16-s + (3.87 − 1.86i)17-s + ⋯ |
L(s) = 1 | + (0.134 − 0.587i)2-s + (0.359 − 0.451i)3-s + (0.573 + 0.276i)4-s + (0.278 − 0.349i)5-s + (−0.216 − 0.272i)6-s + (−0.932 − 0.360i)7-s + (0.615 − 0.771i)8-s + (−0.0741 − 0.324i)9-s + (−0.168 − 0.210i)10-s + (−0.188 + 0.826i)11-s + (0.331 − 0.159i)12-s + (0.343 − 1.50i)13-s + (−0.336 + 0.499i)14-s + (−0.0574 − 0.251i)15-s + (0.0262 + 0.0329i)16-s + (0.939 − 0.452i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.27190 - 1.64776i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.27190 - 1.64776i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.623 + 0.781i)T \) |
| 5 | \( 1 + (-0.623 + 0.781i)T \) |
| 7 | \( 1 + (2.46 + 0.952i)T \) |
good | 2 | \( 1 + (-0.189 + 0.831i)T + (-1.80 - 0.867i)T^{2} \) |
| 11 | \( 1 + (0.625 - 2.74i)T + (-9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (-1.23 + 5.42i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 + (-3.87 + 1.86i)T + (10.5 - 13.2i)T^{2} \) |
| 19 | \( 1 + 1.56T + 19T^{2} \) |
| 23 | \( 1 + (5.71 + 2.75i)T + (14.3 + 17.9i)T^{2} \) |
| 29 | \( 1 + (2.35 - 1.13i)T + (18.0 - 22.6i)T^{2} \) |
| 31 | \( 1 - 8.87T + 31T^{2} \) |
| 37 | \( 1 + (-4.72 + 2.27i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 + (1.73 - 2.17i)T + (-9.12 - 39.9i)T^{2} \) |
| 43 | \( 1 + (-2.68 - 3.36i)T + (-9.56 + 41.9i)T^{2} \) |
| 47 | \( 1 + (2.58 - 11.3i)T + (-42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (0.879 + 0.423i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + (3.43 + 4.31i)T + (-13.1 + 57.5i)T^{2} \) |
| 61 | \( 1 + (-10.8 + 5.24i)T + (38.0 - 47.6i)T^{2} \) |
| 67 | \( 1 + 8.36T + 67T^{2} \) |
| 71 | \( 1 + (4.72 + 2.27i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (-2.77 - 12.1i)T + (-65.7 + 31.6i)T^{2} \) |
| 79 | \( 1 + 5.88T + 79T^{2} \) |
| 83 | \( 1 + (-1.75 - 7.68i)T + (-74.7 + 36.0i)T^{2} \) |
| 89 | \( 1 + (-0.778 - 3.41i)T + (-80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + 6.73T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02350533997243749660197059186, −9.693735448004402854660477475604, −8.162225216175250773152090144661, −7.66796769043208589847850381642, −6.63135071073122320509805375356, −5.84472492984896821317880261178, −4.35478732329581819172033272306, −3.22884404606525913981400223254, −2.47774080176655663271990301530, −1.01611333791507798116387747777,
1.94013692635664205687647030201, 3.08000928147509741993829871313, 4.17263051863819818109577888555, 5.64464759050625587358327558849, 6.14572863255748686633224979245, 6.95124254242505271649228010488, 8.037773172549761441239133036335, 8.870405830364642140702078734342, 9.903055260266149774441928372006, 10.37790443977387496623566460001