L(s) = 1 | + (0.991 − 0.477i)2-s + (−0.222 + 0.974i)3-s + (−0.491 + 0.616i)4-s + (−0.222 + 0.974i)5-s + (0.244 + 1.07i)6-s + (−1.66 − 2.05i)7-s + (−0.682 + 2.99i)8-s + (−0.900 − 0.433i)9-s + (0.244 + 1.07i)10-s + (1.44 − 0.696i)11-s + (−0.491 − 0.616i)12-s + (−4.16 + 2.00i)13-s + (−2.63 − 1.23i)14-s + (−0.900 − 0.433i)15-s + (0.400 + 1.75i)16-s + (1.82 + 2.28i)17-s + ⋯ |
L(s) = 1 | + (0.701 − 0.337i)2-s + (−0.128 + 0.562i)3-s + (−0.245 + 0.308i)4-s + (−0.0995 + 0.436i)5-s + (0.0999 + 0.438i)6-s + (−0.631 − 0.775i)7-s + (−0.241 + 1.05i)8-s + (−0.300 − 0.144i)9-s + (0.0774 + 0.339i)10-s + (0.435 − 0.209i)11-s + (−0.141 − 0.178i)12-s + (−1.15 + 0.556i)13-s + (−0.704 − 0.330i)14-s + (−0.232 − 0.112i)15-s + (0.100 + 0.438i)16-s + (0.441 + 0.554i)17-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(−0.880−0.473i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(−0.880−0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
−0.880−0.473i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(316,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), −0.880−0.473i)
|
Particular Values
L(1) |
≈ |
0.197650+0.785059i |
L(21) |
≈ |
0.197650+0.785059i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222−0.974i)T |
| 5 | 1+(0.222−0.974i)T |
| 7 | 1+(1.66+2.05i)T |
good | 2 | 1+(−0.991+0.477i)T+(1.24−1.56i)T2 |
| 11 | 1+(−1.44+0.696i)T+(6.85−8.60i)T2 |
| 13 | 1+(4.16−2.00i)T+(8.10−10.1i)T2 |
| 17 | 1+(−1.82−2.28i)T+(−3.78+16.5i)T2 |
| 19 | 1+3.21T+19T2 |
| 23 | 1+(3.76−4.72i)T+(−5.11−22.4i)T2 |
| 29 | 1+(2.93+3.68i)T+(−6.45+28.2i)T2 |
| 31 | 1+8.97T+31T2 |
| 37 | 1+(−5.34−6.69i)T+(−8.23+36.0i)T2 |
| 41 | 1+(−1.41+6.20i)T+(−36.9−17.7i)T2 |
| 43 | 1+(0.471+2.06i)T+(−38.7+18.6i)T2 |
| 47 | 1+(4.37−2.10i)T+(29.3−36.7i)T2 |
| 53 | 1+(−1.69+2.12i)T+(−11.7−51.6i)T2 |
| 59 | 1+(−1.83−8.05i)T+(−53.1+25.5i)T2 |
| 61 | 1+(−1.27−1.60i)T+(−13.5+59.4i)T2 |
| 67 | 1−15.1T+67T2 |
| 71 | 1+(3.55−4.46i)T+(−15.7−69.2i)T2 |
| 73 | 1+(−13.3−6.42i)T+(45.5+57.0i)T2 |
| 79 | 1−13.6T+79T2 |
| 83 | 1+(−3.65−1.76i)T+(51.7+64.8i)T2 |
| 89 | 1+(4.77+2.30i)T+(55.4+69.5i)T2 |
| 97 | 1+3.55T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.87314001977976466611537819622, −9.892814240662213415441259520878, −9.313261398876373775472143405944, −8.113588938143048349259408416017, −7.23737217873728916735989976518, −6.16918893872649989636318098355, −5.15135586400547945304024512545, −3.93508328240834357184428958710, −3.71969122310073652312972329340, −2.32766914270782846278596804384,
0.31875035698296767602586071668, 2.18222025485305658700109295578, 3.56882238336160611824868964835, 4.79376278899184797471361619629, 5.52277681345496338773359377019, 6.32653180656338237949972466381, 7.16095766189503127191717892528, 8.221023381254401327551362121716, 9.339494912399552231736740745991, 9.733356275682150103350689692819