L(s) = 1 | + (0.991 − 0.477i)2-s + (−0.222 + 0.974i)3-s + (−0.491 + 0.616i)4-s + (−0.222 + 0.974i)5-s + (0.244 + 1.07i)6-s + (−1.66 − 2.05i)7-s + (−0.682 + 2.99i)8-s + (−0.900 − 0.433i)9-s + (0.244 + 1.07i)10-s + (1.44 − 0.696i)11-s + (−0.491 − 0.616i)12-s + (−4.16 + 2.00i)13-s + (−2.63 − 1.23i)14-s + (−0.900 − 0.433i)15-s + (0.400 + 1.75i)16-s + (1.82 + 2.28i)17-s + ⋯ |
L(s) = 1 | + (0.701 − 0.337i)2-s + (−0.128 + 0.562i)3-s + (−0.245 + 0.308i)4-s + (−0.0995 + 0.436i)5-s + (0.0999 + 0.438i)6-s + (−0.631 − 0.775i)7-s + (−0.241 + 1.05i)8-s + (−0.300 − 0.144i)9-s + (0.0774 + 0.339i)10-s + (0.435 − 0.209i)11-s + (−0.141 − 0.178i)12-s + (−1.15 + 0.556i)13-s + (−0.704 − 0.330i)14-s + (−0.232 − 0.112i)15-s + (0.100 + 0.438i)16-s + (0.441 + 0.554i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.880 - 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.197650 + 0.785059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.197650 + 0.785059i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.222 - 0.974i)T \) |
| 5 | \( 1 + (0.222 - 0.974i)T \) |
| 7 | \( 1 + (1.66 + 2.05i)T \) |
good | 2 | \( 1 + (-0.991 + 0.477i)T + (1.24 - 1.56i)T^{2} \) |
| 11 | \( 1 + (-1.44 + 0.696i)T + (6.85 - 8.60i)T^{2} \) |
| 13 | \( 1 + (4.16 - 2.00i)T + (8.10 - 10.1i)T^{2} \) |
| 17 | \( 1 + (-1.82 - 2.28i)T + (-3.78 + 16.5i)T^{2} \) |
| 19 | \( 1 + 3.21T + 19T^{2} \) |
| 23 | \( 1 + (3.76 - 4.72i)T + (-5.11 - 22.4i)T^{2} \) |
| 29 | \( 1 + (2.93 + 3.68i)T + (-6.45 + 28.2i)T^{2} \) |
| 31 | \( 1 + 8.97T + 31T^{2} \) |
| 37 | \( 1 + (-5.34 - 6.69i)T + (-8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 + (-1.41 + 6.20i)T + (-36.9 - 17.7i)T^{2} \) |
| 43 | \( 1 + (0.471 + 2.06i)T + (-38.7 + 18.6i)T^{2} \) |
| 47 | \( 1 + (4.37 - 2.10i)T + (29.3 - 36.7i)T^{2} \) |
| 53 | \( 1 + (-1.69 + 2.12i)T + (-11.7 - 51.6i)T^{2} \) |
| 59 | \( 1 + (-1.83 - 8.05i)T + (-53.1 + 25.5i)T^{2} \) |
| 61 | \( 1 + (-1.27 - 1.60i)T + (-13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 - 15.1T + 67T^{2} \) |
| 71 | \( 1 + (3.55 - 4.46i)T + (-15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (-13.3 - 6.42i)T + (45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 - 13.6T + 79T^{2} \) |
| 83 | \( 1 + (-3.65 - 1.76i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (4.77 + 2.30i)T + (55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + 3.55T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87314001977976466611537819622, −9.892814240662213415441259520878, −9.313261398876373775472143405944, −8.113588938143048349259408416017, −7.23737217873728916735989976518, −6.16918893872649989636318098355, −5.15135586400547945304024512545, −3.93508328240834357184428958710, −3.71969122310073652312972329340, −2.32766914270782846278596804384,
0.31875035698296767602586071668, 2.18222025485305658700109295578, 3.56882238336160611824868964835, 4.79376278899184797471361619629, 5.52277681345496338773359377019, 6.32653180656338237949972466381, 7.16095766189503127191717892528, 8.221023381254401327551362121716, 9.339494912399552231736740745991, 9.733356275682150103350689692819