L(s) = 1 | + (−0.105 − 0.460i)2-s + (0.623 + 0.781i)3-s + (1.60 − 0.771i)4-s + (0.623 + 0.781i)5-s + (0.294 − 0.369i)6-s + (−2.25 − 1.39i)7-s + (−1.11 − 1.39i)8-s + (−0.222 + 0.974i)9-s + (0.294 − 0.369i)10-s + (1.04 + 4.56i)11-s + (1.60 + 0.771i)12-s + (0.142 + 0.623i)13-s + (−0.403 + 1.18i)14-s + (−0.222 + 0.974i)15-s + (1.69 − 2.12i)16-s + (2.90 + 1.39i)17-s + ⋯ |
L(s) = 1 | + (−0.0742 − 0.325i)2-s + (0.359 + 0.451i)3-s + (0.800 − 0.385i)4-s + (0.278 + 0.349i)5-s + (0.120 − 0.150i)6-s + (−0.850 − 0.525i)7-s + (−0.393 − 0.492i)8-s + (−0.0741 + 0.324i)9-s + (0.0930 − 0.116i)10-s + (0.313 + 1.37i)11-s + (0.462 + 0.222i)12-s + (0.0394 + 0.172i)13-s + (−0.107 + 0.315i)14-s + (−0.0574 + 0.251i)15-s + (0.422 − 0.530i)16-s + (0.704 + 0.339i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0165i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0165i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.03432 - 0.0168692i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.03432 - 0.0168692i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.623 - 0.781i)T \) |
| 5 | \( 1 + (-0.623 - 0.781i)T \) |
| 7 | \( 1 + (2.25 + 1.39i)T \) |
good | 2 | \( 1 + (0.105 + 0.460i)T + (-1.80 + 0.867i)T^{2} \) |
| 11 | \( 1 + (-1.04 - 4.56i)T + (-9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.142 - 0.623i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + (-2.90 - 1.39i)T + (10.5 + 13.2i)T^{2} \) |
| 19 | \( 1 - 8.07T + 19T^{2} \) |
| 23 | \( 1 + (-7.66 + 3.69i)T + (14.3 - 17.9i)T^{2} \) |
| 29 | \( 1 + (-0.216 - 0.104i)T + (18.0 + 22.6i)T^{2} \) |
| 31 | \( 1 + 3.02T + 31T^{2} \) |
| 37 | \( 1 + (7.07 + 3.40i)T + (23.0 + 28.9i)T^{2} \) |
| 41 | \( 1 + (-3.23 - 4.05i)T + (-9.12 + 39.9i)T^{2} \) |
| 43 | \( 1 + (-0.0362 + 0.0454i)T + (-9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (0.410 + 1.80i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-1.50 + 0.726i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 + (-1.86 + 2.33i)T + (-13.1 - 57.5i)T^{2} \) |
| 61 | \( 1 + (8.53 + 4.10i)T + (38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + 15.6T + 67T^{2} \) |
| 71 | \( 1 + (10.7 - 5.17i)T + (44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (-2.95 + 12.9i)T + (-65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + 10.1T + 79T^{2} \) |
| 83 | \( 1 + (3.07 - 13.4i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (0.0120 - 0.0527i)T + (-80.1 - 38.6i)T^{2} \) |
| 97 | \( 1 - 10.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27912766131637605465676692091, −9.703042718266920338237986438940, −9.114954939997587591343610968107, −7.37141803570647728265220295477, −7.11806300450954308909082098797, −6.02196776499603777513865638469, −4.90905872601791633134579371782, −3.54404529236496904385407762750, −2.80340614861400570806186910927, −1.42480787025848217506093687587,
1.26676568925972573799009921016, 3.04071083099275277938334365111, 3.24861409540024308061056999059, 5.46709809940542005442166158074, 5.91828518921764037126155783369, 7.04013028852719495342181667291, 7.61500775815346368318068187644, 8.796952972634559540663982951381, 9.148097324942187794529253721707, 10.33063418397588565269610397713