L(s) = 1 | + (−0.105 − 0.460i)2-s + (0.623 + 0.781i)3-s + (1.60 − 0.771i)4-s + (0.623 + 0.781i)5-s + (0.294 − 0.369i)6-s + (−2.25 − 1.39i)7-s + (−1.11 − 1.39i)8-s + (−0.222 + 0.974i)9-s + (0.294 − 0.369i)10-s + (1.04 + 4.56i)11-s + (1.60 + 0.771i)12-s + (0.142 + 0.623i)13-s + (−0.403 + 1.18i)14-s + (−0.222 + 0.974i)15-s + (1.69 − 2.12i)16-s + (2.90 + 1.39i)17-s + ⋯ |
L(s) = 1 | + (−0.0742 − 0.325i)2-s + (0.359 + 0.451i)3-s + (0.800 − 0.385i)4-s + (0.278 + 0.349i)5-s + (0.120 − 0.150i)6-s + (−0.850 − 0.525i)7-s + (−0.393 − 0.492i)8-s + (−0.0741 + 0.324i)9-s + (0.0930 − 0.116i)10-s + (0.313 + 1.37i)11-s + (0.462 + 0.222i)12-s + (0.0394 + 0.172i)13-s + (−0.107 + 0.315i)14-s + (−0.0574 + 0.251i)15-s + (0.422 − 0.530i)16-s + (0.704 + 0.339i)17-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(0.999+0.0165i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(0.999+0.0165i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
0.999+0.0165i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(526,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), 0.999+0.0165i)
|
Particular Values
L(1) |
≈ |
2.03432−0.0168692i |
L(21) |
≈ |
2.03432−0.0168692i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.623−0.781i)T |
| 5 | 1+(−0.623−0.781i)T |
| 7 | 1+(2.25+1.39i)T |
good | 2 | 1+(0.105+0.460i)T+(−1.80+0.867i)T2 |
| 11 | 1+(−1.04−4.56i)T+(−9.91+4.77i)T2 |
| 13 | 1+(−0.142−0.623i)T+(−11.7+5.64i)T2 |
| 17 | 1+(−2.90−1.39i)T+(10.5+13.2i)T2 |
| 19 | 1−8.07T+19T2 |
| 23 | 1+(−7.66+3.69i)T+(14.3−17.9i)T2 |
| 29 | 1+(−0.216−0.104i)T+(18.0+22.6i)T2 |
| 31 | 1+3.02T+31T2 |
| 37 | 1+(7.07+3.40i)T+(23.0+28.9i)T2 |
| 41 | 1+(−3.23−4.05i)T+(−9.12+39.9i)T2 |
| 43 | 1+(−0.0362+0.0454i)T+(−9.56−41.9i)T2 |
| 47 | 1+(0.410+1.80i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−1.50+0.726i)T+(33.0−41.4i)T2 |
| 59 | 1+(−1.86+2.33i)T+(−13.1−57.5i)T2 |
| 61 | 1+(8.53+4.10i)T+(38.0+47.6i)T2 |
| 67 | 1+15.6T+67T2 |
| 71 | 1+(10.7−5.17i)T+(44.2−55.5i)T2 |
| 73 | 1+(−2.95+12.9i)T+(−65.7−31.6i)T2 |
| 79 | 1+10.1T+79T2 |
| 83 | 1+(3.07−13.4i)T+(−74.7−36.0i)T2 |
| 89 | 1+(0.0120−0.0527i)T+(−80.1−38.6i)T2 |
| 97 | 1−10.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27912766131637605465676692091, −9.703042718266920338237986438940, −9.114954939997587591343610968107, −7.37141803570647728265220295477, −7.11806300450954308909082098797, −6.02196776499603777513865638469, −4.90905872601791633134579371782, −3.54404529236496904385407762750, −2.80340614861400570806186910927, −1.42480787025848217506093687587,
1.26676568925972573799009921016, 3.04071083099275277938334365111, 3.24861409540024308061056999059, 5.46709809940542005442166158074, 5.91828518921764037126155783369, 7.04013028852719495342181667291, 7.61500775815346368318068187644, 8.796952972634559540663982951381, 9.148097324942187794529253721707, 10.33063418397588565269610397713